Comparative Transcriptome Analysis Reveals Color Formation Mechanism in Two Wheat (Triticum aestivum L.) Cultivars

Saini, P., Kumar, N., Kumar, S., et al., Bioactive compounds, nutritional benefits and food applications of colored wheat: a comprehensive review, Crit. Rev. Food Sci. Nutr., 2021, vol. 61, no. 19, pp. 3197—3210. https://doi.org/10.1080/10408398.2020.1793727

Article  CAS  PubMed  Google Scholar 

Shamanin, V.P., Tekin-Cakmak, Z.H., Gordeeva, E.I., et al., Antioxidant capacity and profiles of phenolic acids in various genotypes of purple wheat, Foods, 2022, vol. 11, no. 16, р. 2515. https://doi.org/10.3390/foods11162515

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, W., Liu, T., Nan, W., et al., Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat, J. Exp. Bot., 2018, vol. 69, no. 10, pp. 2555—2567. https://doi.org/10.1093/jxb/ery101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, F., Ji, G., Xu, Z., et al., Metabolomics and transcriptomics provide insights into anthocyanin biosynthesis in the developing grains of purple wheat (Triticum aestivum L.), J. Agric. Food Chem., 2021, vol. 69, no. 38, pp. 11171—11184. https://doi.org/10.1021/acs.jafc.1c01719

Article  CAS  PubMed  Google Scholar 

Zhao, S., Xi, X., Zong, Y., et al., Overexpression of ThMYC4E enhances anthocyanin biosynthesis in common wheat, Int. J. Mol. Sci., 2019, vol. 21, no. 1, р. 137. https://doi.org/10.3390/ijms21010137

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, C., Deng, L., Du, M., et al., A transcriptional network promotes anthocyanin biosynthesis in tomato flesh, Mol. Plant., 2020, vol. 13, no. 1, pp. 42—58. https://doi.org/10.1016/j.molp.2019.10.010

Article  CAS  PubMed  Google Scholar 

Riaz, B., Chen, H., Wang, J., et al., Overexpression of maize ZmC1 and ZmR transcription factors in wheat regulates anthocyanin biosynthesis in a tissue-specific manner, Int. J. Mol. Sci., 2019, vol. 20, no. 22, р. 5806. https://doi.org/10.3390/ijms20225806

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin, D., Choi, M., Kang, C., et al., A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis, Biochem. Biophys. Res. Commun., 2016, vol. 469, no. 3, pp. 686—691. https://doi.org/10.1016/j.bbrc.2015.12.001

Article  CAS  PubMed  Google Scholar 

Serrano, M., Kanehara, K., Torres, M., et al., Repression of sucrose/ultraviolet B light-induced flavonoid accumulation in microbe-associated molecular pattern-triggered immunity in Arabidopsis, Plant. Physiol., 2012, vol. 158, no. 1, pp. 408—422. https://doi.org/10.1104/pp.111.183459

Article  CAS  PubMed  Google Scholar 

Van de Poel, B., Bulens, I., Oppermann, Y., et al., S‑adenosyl-L-methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity, Physiol. Plant., 2013, vol. 148, no. 2, pp. 176—188. https://doi.org/10.1111/j.1399-3054.2012.01703.x

Article  CAS  PubMed  Google Scholar 

Abdel-Aal, E.M., Hucl, P., and Rabalski, I., Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat, Food. Chem., 2018, vol. 254, pp. 13—19. https://doi.org/10.1016/j.foodchem.2018.01.170

Article  CAS  PubMed  Google Scholar 

Sytar, O., Bośko, P., Živčák, M., et al., Bioactive phytochemicals and antioxidant properties of the grains and sprouts of colored wheat genotypes, Molecules, 2018, vol. 23, no. 9, p. 2282. https://doi.org/10.3390/molecules23092282

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calderaro, A., Barreca, D., Bellocco, E., et al., Colored phytonutrients: role and applications in the functional foods of anthocyanins, Phytonutrients in Food, Nabavi, S.M., Suntar, I., Barreca, D., and Khan, H., Eds., Cambridge, UK: Woodhead, 2019, 1st ed, pp. 177—195.

Google Scholar 

Ma, Z.H., Nan, X.T., Li, W.F., et al., Comprehensive genomic identification and expression analysis 4CL gene family in apple, Gene, 2023, vol. 858. https://doi.org/10.1016/j.gene.2023.147197

Chen, X., Wang, P., Gu, M., et al., Identification of PAL genes related to anthocyanin synthesis in tea plants and its correlation with anthocyanin content, Hortic. Plant J., 2022, vol. 8, no. 3, pp. 381—394. https://doi.org/10.1016/j.hpj.2021.12.005

Article  CAS  Google Scholar 

Yang, X., Wang, J., Xia, X., et al., OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice, Plant J., 2021, vol. 107, no. 1, pp. 198—214. https://doi.org/10.1111/tpj.15285

Article  CAS  PubMed  Google Scholar 

Shao, D., Li, Y., Zhu, Q., et al., GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.), Plant Sci., 2021, vol. 305. https://doi.org/10.1016/j.plantsci.2021.110827

Li, C., Yu, W., Xu, J., et al., Anthocyanin biosynthesis induced by MYB transcription factors in plants, Int. J. Mol. Sci., 2022, vol. 23, no. 19. https://doi.org/10.3390/ijms231911701

Zong, Y., Li, G., Xi, X., et al., A bHLH transcription factor TsMYC2 is associated with the blue grain character in triticale (Triticum × Secale), Plant. Cell. Rep., 2019, vol. 38, no. 10, pp. 1291—1298. https://doi.org/10.1007/s00299-019-02449-3

Article  CAS  PubMed  Google Scholar 

Upadhyaya, G., Das, A., and Ray, S., A rice R2R3-MYB (OsC1) transcriptional regulator improves oxidative stress tolerance by modulating anthocyanin biosynthesis, Physiol. Plant., 2021, vol. 173, no. 4, pp. 2334—2349. https://doi.org/10.1111/ppl.13583

Article  CAS  PubMed  Google Scholar 

Qi, T., Song, S., Ren, Q., et al., The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana, Plant Cell, 2011, vol. 23, no. 5, pp. 1795—1814. https://doi.org/10.1105/tpc.111.083261

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das, P., Shin, D., Choi, S., et al., Sugar-hormone cross-talk in anthocyanin biosynthesis, Mol. Cells, 2012, vol. 34, no. 6, pp. 501—507. https://doi.org/10.1007/s10059-012-0151-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, G., Zhao, J., Qin, B., et al., ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants, BMC Plant. Biol., 2019, vol. 19, no. 1, p. 317. https://doi.org/10.1186/s12870-019-1931-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, C., Han, P., Zhao, Y., et al., Auxin regulates anthocyanin biosynthesis through the auxin repressor protein MdIAA26, Biochem. Biophys. Res. Commun., 2020, vol. 533, no. 4, pp. 717—722. https://doi.org/10.1016/j.bbrc.2020.09.065

Article  CAS  PubMed  Google Scholar 

Mo, R., Han, G., Zhu, Z., et al., The ethylene response factor ERF5 regulates anthocyanin biosynthesis in ‘Zijin’ mulberry fruits by interacting with MYBA and F3H genes, Int. J. Mol. Sci., 2022, vol. 23, no. 14, р. 7615. https://doi.org/10.3390/ijms23147615

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif