In situ lipid-loading activates peripheral dendritic cell subsets characterized by cellular ROS accumulation but compromises their capacity to prime naïve T cells

ElsevierVolume 210, January 2024, Pages 406-415Free Radical Biology and MedicineAuthor links open overlay panel, , , , , , , , , , , , Highlights•

Hypercholesterolemia causes an augmentation in granularity of cDCs.

Lipid loading of cDCs results in increased cellular ROS accumulation.

Lipid loading of cDCs results in a compromised T-cell priming function.

AbstractBackground and aims

Dendritic cells (DCs), professional antigen-presenting cells, play an important role in pathologies by controlling adaptive immune responses. However, their adaptation to and functionality in hypercholesterolemia, a driving factor in disease onset and progression of atherosclerosis remains to be established.

Methods

In this study, we addressed the immediate impact of high fat diet-induced hypercholesterolemia in low-density lipoprotein receptor deficient (Ldlr−/−) mice on separate DC subsets, their compartmentalization and functionality.

Results

While hypercholesterolemia induced a significant rise in bone marrow myeloid and dendritic cell progenitor (MDP) frequency and proliferation rate after high fat diet feeding, it did not affect DC subset numbers in lymphoid tissue. Hypercholesterolemia led to almost immediate and persistent augmentation in granularity of conventional DCs (cDCs), in particular cDC2, reflecting progressive lipid accumulation by these subsets. Plasmacytoid DCs were only marginally and transiently affected. Lipid loading increased co-stimulatory molecule expression and ROS accumulation by cDC2. Despite this hyperactivation, lipid-laden cDC2 displayed a profoundly reduced capacity to stimulate naïve CD4+ T cells.

Conclusion

Our data provide evidence that in hypercholesterolemic conditions, peripheral cDC2 subsets engulf lipids in situ, leading to a more activated status characterized by cellular ROS accumulation while, paradoxically, compromising their T cell priming ability. These findings will have repercussions not only for lipid driven cardiometabolic disorders like atherosclerosis, but also for adaptive immune responses to pathogens and/or endogenous (neo) antigens under conditions of hyperlipidemia.

Keywords

Hypercholesterolemia

Dendritic cells

ROS accumulation

T cell priming

© 2023 The Authors. Published by Elsevier Inc.

留言 (0)

沒有登入
gif