Restoring microRNA-34a overcomes acquired drug resistance and disease progression in human breast cancer cell lines via suppressing the ABCC1 gene

Xu Y, Gong M, Wang Y et al (2023) Global trends and forecasts of breast cancer incidence and deaths. Sci Data 10:334. https://doi.org/10.1038/s41597-023-02253-5

Article  PubMed  PubMed Central  Google Scholar 

National Cancer Institute, surveillance, epidemiology and end result program (2023) (https://seer.cancer.gov/statfacts/html/breast.html).

Li J, Guo Y, Duan L, Hu X, Zhang X, Hu J, Huang L, He R, Hu Z, Luo W, Tan T, Huang R, Liao D, Zhu YS, Luo DX (2017) AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling. Oncotarget 8(20):33694–33703. https://doi.org/10.18632/oncotarget.16624

Article  PubMed  PubMed Central  Google Scholar 

Kastl L, Brown I, Schofield AC (2012) miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat 131(2):445–454. https://doi.org/10.1007/s10549-011-1424-3

Article  CAS  PubMed  Google Scholar 

Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O (2010) Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127(8):1785–1794. https://doi.org/10.1002/ijc.25191

Article  CAS  PubMed  Google Scholar 

Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P (2022) MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 41(1):77–105. https://doi.org/10.1007/s10555-021-09992-0

Article  CAS  PubMed  Google Scholar 

Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J (2018) Functional miRNAs in breast cancer drug resistance. Onco Targets Ther 11:1529–1541. https://doi.org/10.2147/OTT.S152462

Article  PubMed  PubMed Central  Google Scholar 

Morris K, Mattick J (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437. https://doi.org/10.1038/nrg3722

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Toukhy SE, El-Daly SM, Kamel MM et al (2023) The diagnostic significance of circulating miRNAs and metabolite profiling in early prediction of breast cancer in Egyptian women. J Cancer Res Clin Oncol 149:5437–5451. https://doi.org/10.1007/s00432-022-04492-2

Article  CAS  PubMed  Google Scholar 

Zhang L, Liao Y, Tang L (2019) MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 38(1):53. https://doi.org/10.1186/s13046-019-1059-5

Article  PubMed  PubMed Central  Google Scholar 

Yahya SM, Elsayed GH (2015) A summary for molecular regulations of miRNAs in breast cancer. Clin Biochem 48(6):388–396. https://doi.org/10.1016/j.clinbiochem.2014.12.013

Article  CAS  PubMed  Google Scholar 

Naghizadeh S, Mohammadi A, Duijf PHG, Baradaran B, Safarzadeh E, Cho WC, Mansoori B (2020) The role of miR-34 in cancer drug resistance. J Cell Physiol 235(10):6424–6440. https://doi.org/10.1002/jcp.29640

Article  CAS  PubMed  Google Scholar 

Imani S, Wu RC, Fu J (2018) MicroRNA-34 family in breast cancer: from research to therapeutic potential. J Cancer 9(20):3765–3775. https://doi.org/10.7150/jca.25576

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan W, Chai B, Li L, Lu Z, Ma Z (2023) p53/MicroRNA-34 axis in cancer and beyond. Heliyon 9(4):e15155. https://doi.org/10.1016/j.heliyon.2023.e15155

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yahya SMM, Elmegeed GA, Mohamed MS, Mohareb RM, Abd-Elhalim MM, Elsayed GH (2018) The effect of newly synthesized heterosteroids on miRNA34a, 98, and 214 expression levels in MCF-7 breast cancer cells. Indian J Clin Biochem 33(3):328–333. https://doi.org/10.1007/s12291-017-0681-2

Article  CAS  PubMed  Google Scholar 

Liao R, Lin Y, Zhu L (2018) Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol Biol Rep 45(6):2913–2923. https://doi.org/10.1007/s11033-018-4358-6

Article  CAS  PubMed  Google Scholar 

Gomes BC, Honrado M, Armada A, Viveiros M, Rueff J, Rodrigues AS (2020) ABC efflux transporters and the circuitry of miRNAs: kinetics of expression in cancer drug resistance. Int J Mol Sci 21(8):2985. https://doi.org/10.3390/ijms21082985

Article  CAS  PubMed  PubMed Central  Google Scholar 

He P, Liu X, Lou Y, Gong S, Cao L (2022) miR-34a-5p enhances the sensitivity of cervical cancer cells to oxaliplatin chemotherapy via targeting MDM4. Clin Exp Obstet Gynecol 49(2):54. https://doi.org/10.31083/j.ceog4902054

Article  Google Scholar 

Pratama MY, Pascut D, Massi MN, Tiribelli C (2019) The role of microRNA in the resistance to treatment of hepatocellular carcinoma. Ann Transl Med 7(20):577. https://doi.org/10.21037/atm.2019.09.142

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kern F, Krammes L, Danz K, Diener C, Kehl T, Küchler O, Fehlmann T, Kahraman M, Rheinheimer S, Aparicio-Puerta E, Wagner S, Ludwig N, Backes C, Lenhof HP, von Briesen H, Hart M, Keller A, Meese E (2021) Validation of human microRNA target pathways enables evaluation of target prediction tools. Nucleic Acids Res 49(1):127–144. https://doi.org/10.1093/nar/gkaa1161

Article  CAS  PubMed  Google Scholar 

Yang X, Shang P, Yu B, Jin Q, Liao J, Wang L, Guo X (2021) Combination therapy with miR34a and doxorubicin synergistically inhibits Dox-resistant breast cancer progression via down-regulation of Snail through suppressing Notch/NF-κB and RAS/RAF/MEK/ERK signaling pathway. Acta Pharmaceutica Sinica B 11(9):2819–2834. https://doi.org/10.1016/j.apsb.2021.06.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rana NK, Singh P, Koch B (2019) CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol Res 52(1):12. https://doi.org/10.1186/s40659-019-0221-z

Article  PubMed  PubMed Central  Google Scholar 

Krisnamurti DG, Louisa M, Anggraeni E, Wanandi SI (2016) Drug efflux transporters are overexpressed in short-term tamoxifen-induced MCF7 breast cancer cells. Adv Pharmacol Sci 2016:6702424. https://doi.org/10.1155/2016/6702424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yahya SMM, Fathy SA, El-Khayat ZA et al (2018) Possible role of microRNA-122 in modulating multidrug resistance of hepatocellular carcinoma. Ind J Clin Biochem 33:21–30. https://doi.org/10.1007/s12291-017-0651-8

Article  CAS  Google Scholar 

Hamed AR, Yahya SMM, Nabih HK (2023) Anti-drug resistance, anti-inflammation, and anti-proliferation activities mediated by melatonin in doxorubicin-resistant hepatocellular carcinoma: in vitro investigations. Naunyn-Schmiedeberg’s Arch Pharmacol 396:1117–1128. https://doi.org/10.1007/s00210-023-02385-w

Article  CAS  Google Scholar 

Nabih HK, Hamed AR, Yahya SMM (2023) Anti-proliferative effect of melatonin in human hepatoma HepG2 cells occurs mainly through cell cycle arrest and inflammation inhibition. Sci Rep 13:4396. https://doi.org/10.1038/s41598-023-31443-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS (2013) Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 127(6):739–749. https://doi.org/10.1111/jnc.12437

Article  CAS  PubMed  Google Scholar 

Truksa J, Lee P, Beutler E (2007) The role of STAT, AP-1, E-box and TIEG motifs in the regulation of hepcidin by IL-6 and BMP-9: lessons from human HAMP and murine Hamp1 and Hamp2 gene promoters. Blood Cells Mol Dis 39(3):255–262. https://doi.org/10.1016/j.bcmd.2007.06.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Punia R, Raina K, Agarwal R, Singh RP (2017) Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One 12(8):e0182870. https://doi.org/10.1371/journal.pone.0182870

Article  CAS  PubMed  PubMed Central  Google Scholar 

Achari C, Winslow S, Ceder Y et al (2014) Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells. BMC Cancer 14:538. https://doi.org/10.1186/1471-2407-14-538

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park S, Kim H, Ji HW, Kim HW, Yun SH, Choi EH, Kim SJ (2019) Cold atmospheric plasma restores paclitaxel sensitivity to paclitaxel-resistant breast cancer cells by reversing expression of resistance-related genes. Cancers (Basel) 11(12):2011. https://doi.org/10.3390/cancers11122011

Article  CAS  PubMed  Google Scholar 

Li ZH, Weng X, Xiong QY, Tu JH, Xiao A, Qiu W, Gong Y, Hu EW, Huang S, Cao YL (2017) miR-34a expression in human breast cancer is associated with drug resistance. Oncotarget 8(63):106270–106282. https://doi.org/10.18632/oncotarget.22286

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif