Upregulation of UHRF1 Promotes PINK1-mediated Mitophagy to Alleviates Ferroptosis in Diabetic Nephropathy

Srivastava, S.P., H. Zhou, O. Setia, B. Liu, K. Kanasaki, et al. 2021. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nature Communications 12 (1): 2368. https://doi.org/10.1038/s41467-021-22617-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, C., M.J. Livingston, Z. Liu, and Z. Dong. 2020. Autophagy in kidney homeostasis and disease. Nature Reviews Nephrology 16 (9): 489–508. https://doi.org/10.1038/s41581-020-0309-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y., R. Bi, F. Quan, Q. Cao, Y. Lin, et al. 2020. Ferroptosis involves in renal tubular cell death in diabetic nephropathy. European Journal of Pharmacology 888: 173574. https://doi.org/10.1016/j.ejphar.2020.173574.

Article  CAS  PubMed  Google Scholar 

Yao, W., H. Liao, M. Pang, L. Pan, Y. Guan, et al. 2022. Inhibition of the NADPH oxidase pathway reduces ferroptosis during septic renal injury in diabetic mice. Oxidative Medicine and Cellular Longevity 2022: 1193734. https://doi.org/10.1155/2022/1193734.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y., T. Li, Z. Li, N. Liu, Y. Yan, et al. 2020. Role of mitophagy in cardiovascular disease. Aging and Disease 11 (2): 419–37. https://doi.org/10.14336/ad.2019.0518.

Narendra, D., J.E. Walker, and R. Youle. 2012. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspectives in Biology 4 (11). https://doi.org/10.1101/cshperspect.a011338.

Lin, Q., S. Li, H. Jin, H. Cai, X. Zhu, et al. 2023. Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. International Journal of Biological Sciences 19 (4): 1192–1210. https://doi.org/10.7150/ijbs.80775.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui, Y., X. Chen, J. Zhang, X. Sun, H. Liu, et al. 2016. Uhrf1 Controls iNKT Cell Survival and Differentiation through the Akt-mTOR Axis. Cell Reports 15 (2): 256–263. https://doi.org/10.1016/j.celrep.2016.03.016.

Article  CAS  PubMed  Google Scholar 

Elia, L., P. Kunderfranco, P. Carullo, M. Vacchiano, F.M. Farina, et al. 2018. UHRF1 epigenetically orchestrates smooth muscle cell plasticity in arterial disease. The Journal of Clinical Investigation 128 (6): 2473–2486. https://doi.org/10.1172/jci96121.

Article  PubMed  PubMed Central  Google Scholar 

Hsu, Y.H., H.H. Li, J.M. Sung, W.Y. Chen, Y.C. Hou, et al. 2017. Interleukin-20 targets podocytes and is upregulated in experimental murine diabetic nephropathy. Experimental & Molecular Medicine 49 (3): e310. https://doi.org/10.1038/emm.2016.169.

Article  CAS  Google Scholar 

Huang, C., Y. Zhang, D.J. Kelly, C.Y. Tan, A. Gill, et al. 2016. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Science and Reports 6: 29196. https://doi.org/10.1038/srep29196.

Article  CAS  Google Scholar 

Kim, M. J., H.J. Lee, M.Y. Choi, S.S. Kang, Y.S. Kim, et al. 2021. UHRF1 induces methylation of the TXNIP promoter and down-regulates gene expression in cervical cancer. Molecules and Cells 44 (3): 146–59. https://doi.org/10.14348/molcells.2021.0001.

Jiao, D., Y. Huan, J. Zheng, M. Wei, G. Zheng, et al. 2019. UHRF1 promotes renal cell carcinoma progression through epigenetic regulation of TXNIP. Oncogene 38 (28): 5686–5699. https://doi.org/10.1038/s41388-019-0822-6.

Article  CAS  PubMed  Google Scholar 

Guo, Z., X. Wan, Y. Luo, F. Liang, S. Jiang, et al. 2023. The vicious circle of UHRF1 down-regulation and KEAP1/NRF2/HO-1 pathway impairment promotes oxidative stress-induced endothelial cell apoptosis in diabetes. Diabetic Medicine 40 (4): e15026. https://doi.org/10.1111/dme.15026.

Article  CAS  PubMed  Google Scholar 

Kim, J.K., G. Kan, Y. Mao, Z. Wu, X. Tan, et al. 2020. UHRF1 downmodulation enhances antitumor effects of histone deacetylase inhibitors in retinoblastoma by augmenting oxidative stress-mediated apoptosis. Molecular Oncology 14 (2): 329–346. https://doi.org/10.1002/1878-0261.12607.

Article  CAS  PubMed  Google Scholar 

Yang, R., Y. Zhou, T. Zhang, S. Wang, J. Wang, et al. 2023. The transcription factor HBP1 promotes ferroptosis in tumor cells by regulating the UHRF1-CDO1 axis. PLoS Biology 21 (7): e3001862. https://doi.org/10.1371/journal.pbio.3001862.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, R., H. Liu, H. Peng, J. Zhou, H. Zha, et al. 2015. Promoter hypermethylation of let-7a-3 is relevant to its down-expression in diabetic nephropathy by targeting UHRF1. Gene 570 (1): 57–63. https://doi.org/10.1016/j.gene.2015.05.073.

Article  CAS  PubMed  Google Scholar 

Chen, Z., C. Wang, Y. Pan, X. Gao, and H. Chen. 2018. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food & Function 9 (1): 426–439. https://doi.org/10.1039/c7fo00983f.

Article  CAS  Google Scholar 

Lin, G., X. Liu, X. Yan, D. Liu, C. Yang, et al. 2018. Role of green macroalgae Enteromorpha prolifera polyphenols in the modulation of gene expression and intestinal microflora profiles in type 2 diabetic mice. International Journal of Molecular Sciences 20 (1). https://doi.org/10.3390/ijms20010025.

Kumar, A., and R. Mittal. 2018. Mapping Txnip: Key connexions in progression of diabetic nephropathy. Pharmacological Reports 70 (3): 614–622. https://doi.org/10.1016/j.pharep.2017.12.008.

Article  CAS  PubMed  Google Scholar 

Mao, Y., J. Du, X. Chen, Mamun A. Al, L. Cao, et al. 2022. Maltol Promotes Mitophagy and Inhibits Oxidative Stress via the Nrf2/PINK1/Parkin Pathway after Spinal Cord Injury. Oxidative Medicine and Cellular Longevity 2022: 1337630. https://doi.org/10.1155/2022/1337630.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, D., X. Chen, R. Kang, and G. Kroemer. 2021. Ferroptosis: Molecular mechanisms and health implications. Cell Research 31 (2): 107–125. https://doi.org/10.1038/s41422-020-00441-1.

Article  CAS  PubMed  Google Scholar 

De Marinis, Y., M. Cai, P. Bompada, D. Atac, O. Kotova, et al. 2016. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney International 89 (2): 342–353. https://doi.org/10.1016/j.kint.2015.12.018.

Article  CAS  PubMed  Google Scholar 

Lu, C.C., Z.B. Hu, R. Wang, Z.H. Hong, J. Lu, et al. 2020. Gut microbiota dysbiosis-induced activation of the intrarenal renin-angiotensin system is involved in kidney injuries in rat diabetic nephropathy. Acta Pharmacologica Sinica 41 (8): 1111–1118. https://doi.org/10.1038/s41401-019-0326-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y., Cai J., Tang C., Dong Z. 2020. Mitophagy in acute kidney injury and kidney repair. Cells 9(2). https://doi.org/10.3390/cells9020338.

Saxena, S., A. Mathur, and P. Kakkar. 2019. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy. Journal of Cellular Physiology 234 (11): 19223–19236. https://doi.org/10.1002/jcp.28712.

Article  CAS  PubMed  Google Scholar 

Abu-Alainin, W., T. Gana, T. Liloglou, A. Olayanju, L.N. Barrera, et al. 2016. UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis. The Journal of Pathology 238 (3): 423–433. https://doi.org/10.1002/path.4665.

Article  CAS  PubMed  Google Scholar 

Su, C.J., Z. Shen, R.X. Cui, Y. Huang, D.L. Xu, et al. 2020. Thioredoxin-Interacting Protein (TXNIP) Regulates Parkin/PINK1-mediated Mitophagy in Dopaminergic Neurons Under High-glucose Conditions: Implications for Molecular Links Between Parkinson’s Disease and Diabetes. Neuroscience Bulletin 36 (4): 346–358. https://doi.org/10.1007/s12264-019-00459-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivankovic, D., K.Y. Chau, A.H. Schapira, and M.E. Gegg. 2016. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. Journal of Neurochemistry 136 (2): 388–402. https://doi.org/10.1111/jnc.13412.

Article  CAS  PubMed  Google Scholar 

Nakamura, T., I. Naguro, and H. Ichijo. 2019. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica et Biophysica Acta - General Subjects 1863 (9): 1398–1409. https://doi.org/10.1016/j.bbagen.2019.06.010.

Article  CAS  PubMed  Google Scholar 

Du, Y., R. Zhang, G. Zhang, H. Wu, S. Zhan, et al. 2022. Downregulation of ELAVL1 attenuates ferroptosis-induced neuronal impairment in rats with cerebral ischemia/reperfusion via reducing DNMT3B-dependent PINK1 methylation. Metabolic Brain Disease 37 (8): 2763–2775. https://doi.org/10.1007/s11011-022-01080-8.

Article  CAS  PubMed  Google Scholar 

Dixon, S.J., K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, et al. 2012. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149 (5): 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei, P., T. Bai, and Y. Sun. 2019. Mechanisms of ferroptosis and relations with regulated cell death: a review. Frontiers in Physiology 10: 139. https://doi.org/10.3389/fphys.2019.00139.

Article  PubMed  PubMed Central  Google Scholar 

Matsumoto, M., N. Sasaki, T. Tsujino, H. Akahori, Y. Naito, et al. 2013. Iron restriction prevents diabetic nephropathy in Otsuka Long-Evans Tokushima fatty rat. Renal Failure 35 (8): 1156–1162. https://doi.org/10.3109/0886022x.2013.819729.

Article  CAS  PubMed  Google Scholar 

Feng, H., and B.R. Stockwell. 2018. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biology 16 (5): e2006203. https://doi.org/10.1371/journal.pbio.2006203.

Article  CAS  PubMed  P

留言 (0)

沒有登入
gif