Single-Cell RNA Sequencing Reveals RAC1 Involvement in Macrophages Efferocytosis in Diabetic Kidney Disease

Jung, C.-Y., and T.-H. Yoo. 2022. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes and Metabolism Journal 46: 181–197.

Article  PubMed  PubMed Central  Google Scholar 

Hu, Q., Y. Chen, X. Deng, Y. Li, X. Ma, J. Zeng, and Y. Zhao. 2023. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomedicine & Pharmacotherapy 159: 114252.

Article  Google Scholar 

Liu, Y., A. Uruno, R. Saito, N. Matsukawa, E. Hishinuma, D. Saigusa, H. Liu, and M. Yamamoto. 2022. Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice. Redox Biology 58: 102525.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boada-Romero, E., J. Martinez, B.L. Heckmann, and D.R. Green. 2020. The clearance of dead cells by efferocytosis. Nature Reviews Molecular Cell Biology 21: 398–414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doddapattar, P., R. Dev, M. Ghatge, R.B. Patel, M. Jain, N. Dhanesha, S.R. Lentz, and A.K. Chauhan. 2022. Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circulation Research 130: 1289–1305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, W., X. Dai, J. Chen, J. Zhao, M. Xu, L. Zhang, B. Yang, W. Zhang, M. Rocha, T. Nakao, J. Kofler, Y. Shi, R.A. Stetler, X. Hu, and J. Chen. 2019. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4: e131355.

Article  PubMed  PubMed Central  Google Scholar 

Birge, R.B., S. Boeltz, S. Kumar, J. Carlson, J. Wanderley, D. Calianese, M. Barcinski, R.A. Brekken, X. Huang, J.T. Hutchins, B. Freimark, C. Empig, J. Mercer, A.J. Schroit, G. Schett, and M. Herrmann. 2016. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death and Differentiation 23: 962–978.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stuart, T., A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W.M. Mauck, Y. Hao, M. Stoeckius, P. Smibert, and R. Satija. 2019. Comprehensive integration of single-cell data. Cell 177: 1888–1902.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, J., K.M. Akat, Z. Sun, W. Zhang, D. Schlondorff, Z. Liu, T. Tuschl, K. Lee, and J.C. He. 2019. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. Journal of the American Society of Nephrology 30: 533–545.

Article  CAS  PubMed  Google Scholar 

Wilson, P.C., H. Wu, Y. Kirita, K. Uchimura, N. Ledru, H.G. Rennke, P.A. Welling, S.S. Waikar, and B.D. Humphreys. 2019. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proceedings of the National Academy of Sciences 116: 19619–19625.

Article  CAS  Google Scholar 

Wei, Y., X. Gao, A. Li, M. Liang, and Z. Jiang. 2021. Single-nucleus transcriptomic analysis reveals important cell cross-talk in diabetic kidney disease. Frontiers in Medicine 8: 657956.

Article  PubMed  PubMed Central  Google Scholar 

Lu, X., L. Li, L. Suo, P. Huang, H. Wang, S. Han, and M. Cao. 2022. Single-cell RNA sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy. Frontiers in Cell and Developmental Biology 10: 798316.

Article  PubMed  PubMed Central  Google Scholar 

Cai, X.-Y., Z.-F. Wang, S.-W. Ge, and G. Xu. 2022. Identification of hub genes and immune-related pathways for membranous nephropathy by bioinformatics analysis. Frontiers in Physiology 13: 914382.

Article  PubMed  PubMed Central  Google Scholar 

Aran, D., A.P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R.P. Naikawadi, P.J. Wolters, A.R. Abate, A.J. Butte, and M. Bhattacharya. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology 20: 163–172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Efremova, M., M. Vento-Tormo, S.A. Teichmann, and R. Vento-Tormo. 2020. Cell PhoneDB: Inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nature Protocols 15: 1484–1506.

Article  CAS  PubMed  Google Scholar 

Shannon, P., A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szklarczyk, D., A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, L.J. Jensen, and C. von Mering. 2021. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research 49: D605–D612.

Article  CAS  PubMed  Google Scholar 

Muto, Y., E.E. Dixon, Y. Yoshimura, H. Wu, K. Omachi, N. Ledru, P.C. Wilson, A.J. King, N. Eric Olson, M.G. Gunawan, J.J. Kuo, J.H. Cox, J.H. Miner, S.L. Seliger, O.M. Woodward, P.A. Welling, T.J. Watnick, and B.D. Humphreys. 2022. Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis. Nature Communications 13: 6497.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muto, Y., P.C. Wilson, N. Ledru, H. Wu, H. Dimke, S.S. Waikar, and B.D. Humphreys. 2021. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nature Communications 12: 2190.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doran, A.C., A. Yurdagul, and I. Tabas. 2020. Efferocytosis in health and disease. Nature Reviews Immunology 20: 254–267.

Article  CAS  PubMed  Google Scholar 

Fabregat, A., S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie, P. Garapati, R. Haw, B. Jassal, F. Korninger, B. May, M. Milacic, C.D. Roca, K. Rothfels, C. Sevilla, V. Shamovsky, S. Shorser, T. Varusai, G. Viteri, J. Weiser, G. Wu, L. Stein, H. Hermjakob, and P. D’Eustachio. 2018. The reactome pathway knowledgebase. Nucleic Acids Research 46: D649–D655.

Article  CAS  PubMed  Google Scholar 

Chin, C.-H., S.-H. Chen, H.-H. Wu, C.-W. Ho, M.-T. Ko, and C.-Y. Lin. 2014. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 8 (Suppl 4): S11.

Article  PubMed  PubMed Central  Google Scholar 

Tang, S.C.W., and W.H. Yiu. 2020. Innate immunity in diabetic kidney disease. Nature Reviews. Nephrology 16: 206–222.

Article  CAS  PubMed  Google Scholar 

Ma, T., X. Li, Y. Zhu, S. Yu, T. Liu, X. Zhang, D. Chen, S. Du, T. Chen, S. Chen, Y. Xu, and Q. Fan. 2022. Excessive activation of notch signaling in macrophages promote kidney inflammation, fibrosis, and necroptosis. Frontiers in Immunology 13: 835879.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Q., J. Liao, W. Chen, K. Zhang, H. Li, F. Ma, H. Zhang, Q. Han, J. Guo, Y. Li, L. Hu, J. Pan, and Z. Tang. 2022. NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway. Free Radical Biology & Medicine 187: 158–170.

Article  CAS  Google Scholar 

Dias, C.G., L. Venkataswamy, and S. Balakrishna. 2022. Diabetic nephropathy patients show hyper-responsiveness to N6-carboxymethyllysine. Brazilian Journal of Medical and Biological Research 55: e11984.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song, Y., F. Guo, Y.-Y. Zhao, X.-J. Ma, L.-N. Wu, J.-F. Yu, H.-F. Ji, M.-W. Shao, F.-J. Huang, L. Zhao, X.-J. Fan, Y.-N. Xu, Q.-Z. Wang, and G.-J. Qin. 2023. Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Cell Proliferation 56: e13349.

Article  CAS  PubMed  Google Scholar 

Barutta, F., S. Bellini, S. Kimura, K. Hase, B. Corbetta, A. Corbelli, F. Fiordaliso, S. Bruno, L. Biancone, A. Barreca, M.G. Papotti, E. Hirsh, M. Martini, R. Gambino, M. Durazzo, H. Ohno, and G. Gruden. 2023. Protective effect of the tunneling nanotube-TNFAIP2/M-sec system on podocyte autophagy in diabetic nephropathy. Autophagy 19: 505–524.

Article  CAS  PubMed  Google Scholar 

Maschalidi, S., P. Mehrotra, B.N. Keçeli, H.K.L. De Cleene, K. Lecomte, R. Van der Cruyssen, P. Janssen, J. Pinney, G. van Loo, D. Elewaut, A. Massie, E. Hoste, and K.S. Ravichandran. 2022. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606: 776–784.

Article  CAS  PubMed  Google Scholar 

Geng, L., J. Zhao, Y. Deng, I. Molano, X. Xu, L. Xu, P. Ruiz, Q. Li, X. Feng, M. Zhang, W. Tan, D.L. Kamen, S.-C. Bae, G.S. Gilkeson, L. Sun, and B.P. Tsao. 2022. Human SLE variant NCF1-R90H promotes kidney damage and murine lupus through enhanced Tfh2 responses induced by defective efferocytosis of macrophages. Annals of the Rheumatic Diseases 81: 255–267.

Article  CAS  PubMed  Google Scholar 

Chen, Z.Z., L. Johnson, U. Trahtemberg, A. Baker, S. Huq, J. Dufresne, P. Bowden, M. Miao, J.-A. Ho, C.-C. Hsu, C.C. Dos Santos, and J.G. Marshall. 2023. Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients. Clinical Proteomics 20: 17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brustovetsky, N.N., Z.G. Amerkhanov, E. Popova, and A.A. Konstantinov. 1990. Reversible inhibition of electron transfer in the ubiquinol: cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels. FEBS Letters 263: 73–76.

Article  CAS 

留言 (0)

沒有登入
gif