Association of preoperative retinal microcirculation and perioperative outcomes in patients undergoing congenital cardiac surgery

Liu Y, Chen S, Zühlke L, Black GC, Choy M-K, Li N, et al. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48(2):455–63.

Article  PubMed  PubMed Central  Google Scholar 

GBD 2017 Congenital Heart Disease Collaborators. Global, regional, and national burden of congenital Heart Disease, 1990–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet Child Adolesc Health. 2020;4(3):185–200.

Article  Google Scholar 

Bouma BJ. Mulder BJM. Changing Landscape of congenital Heart Disease. Circ Res. 2017;120(6):908–22.

Article  CAS  PubMed  Google Scholar 

Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49(1):88–98.

Article  PubMed  Google Scholar 

Nam K, Oh H-M, Koo C-H, Kim TK, Cho YJ, Hong DM, et al. Microvascular reactivity measured by vascular occlusion test is an Independent predictor for postoperative bleeding in patients undergoing cardiac Surgery. J Clin Monit Comput. 2018;32(2):295–301.

Article  PubMed  Google Scholar 

Kim TK, Cho YJ, Min JJ, Murkin JM, Bahk J-H, Hong DM, et al. Microvascular reactivity and clinical outcomes in cardiac Surgery. Crit Care. 2015;19:316.

Article  PubMed  PubMed Central  Google Scholar 

Abrard S, Fouquet O, Riou J, Rineau E, Abraham P, Sargentini C, et al. Preoperative endothelial dysfunction in cutaneous microcirculation is associated with postoperative organ injury after cardiac Surgery using extracorporeal circulation: a prospective cohort study. Ann Intensive Care. 2021;11(1):4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abrard S, Lasocki S, Henni S. Pre-operative evaluation of microcirculation for the prediction of Complications after cardiac Surgery under extracorporeal circulation: study protocol. Eur J Anaesthesiol. 2019;36(8):613–5.

Article  PubMed  Google Scholar 

Farrah TE, Dhillon B, Keane PA, Webb DJ, Dhaun N. The eye, the kidney, and Cardiovascular Disease: old concepts, better tools, and new horizons. Kidney Int. 2020;98(2):323–42.

Article  PubMed  PubMed Central  Google Scholar 

Jung N-Y, Han JC, Ong YT, Cheung CY-L, Chen CP, Wong TY, et al. Retinal microvasculature changes in amyloid-negative subcortical vascular cognitive impairment compared to amyloid-positive Alzheimer’s Disease. J Neurol Sci. 2019;396:94–101.

Article  CAS  PubMed  Google Scholar 

Kashani AH, Chen C-L, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100.

Article  PubMed  PubMed Central  Google Scholar 

Zhong PT, Li ZX, Lin YW, Peng QS, Huang MQ, Jiang L, et al. Retinal microvasculature impairments in patients with coronary artery Disease: an optical coherence tomography angiography study. Acta Ophthalmol. 2021;100(2):225–33.

Article  PubMed  Google Scholar 

Pellegrini M, Vagge A, Desideri LFF, Bernabei F, Triolo G, Mastropasqua R, et al. Optical coherence tomography angiography in neurodegenerative disorders. J Clin Med. 2020;9(6):1706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu I-W, Sun C-C, Lee C-C, Liu C-F, Wong TY, Chen S-Y, et al. Retinal neurovascular changes in chronic Kidney Disease. Acta Ophthalmol. 2020;98(7):e848–e55.

Article  CAS  PubMed  Google Scholar 

Li C, Zhong PT, Yuan HY, Dong XR, Peng QS, Huang MQ, et al. Retinal microvasculature impairment in patients with congenital Heart Disease investigated by optical coherence tomography angiography. Clin Exp Ophthalmol. 2020;48(9):1219–28.

Article  PubMed  PubMed Central  Google Scholar 

Li C, Zhu ZT, Yuan HY, Zhong PT, Peng QS, Dong XR, et al. Improved retinal Microcirculation after Cardiac Surgery in patients with congenital Heart Disease. Front Cardiovasc Med. 2021;8:712308.

Article  PubMed  PubMed Central  Google Scholar 

Lei J, Pei C, Wen C, Abdelfattah NS. Repeatability and reproducibility of quantification of superficial peri-papillary capillaries by four different optical coherence tomography angiography devices. Sci Rep. 2018;8(1):17866.

Article  CAS  PubMed  PubMed Central  Google Scholar 

You Q, Freeman WR, Weinreb RN, Zangwill L, Manalastas PIC, Saunders LJ, et al. Reproducibility of vessel density measurement with optical coherence tomography angiography in eyes with and without retinopathy. Retina. 2017;37(8):1475–82.

Article  PubMed  PubMed Central  Google Scholar 

Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, et al. 2018 AHA/ACC Guideline for the management of adults with congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines. Circulation. 2019;139(14):e698–e800.

PubMed  Google Scholar 

Jacobs ML, O’Brien SM, Jacobs JP, Mavroudis C, Lacour-Gayet F, Pasquali SK, et al. An empirically based tool for analyzing morbidity associated with operations for congenital Heart Disease. J Thorac Cardiovasc Surg. 2013;145(4):1046–57.

Article  PubMed  Google Scholar 

Pasquali SK, Thibault D, O’Brien SM, Jacobs JP, Gaynor JW, Romano JC, et al. National variation in congenital heart Surgery outcomes. Circulation. 2020;142(14):1351–60.

Article  PubMed  PubMed Central  Google Scholar 

Guzzetta NA, Allen NN, Wilson EC, Foster GS, Ehrlich AC, Miller BE. Excessive postoperative bleeding and outcomes in neonates undergoing cardiopulmonary bypass. Anesth Analg. 2015;120(2):405–10.

Article  PubMed  Google Scholar 

O’Byrne ML, Kim S, Hornik CP, Yerokun BA, Matsouaka RA, Jacobs JP, et al. Effect of obesity and underweight status on Perioperative outcomes of congenital Heart operations in children, adolescents, and young adults: an analysis of Data from the Society of thoracic surgeons database. Circulation. 2017;136(8):704–18.

Article  PubMed  PubMed Central  Google Scholar 

Kurinami N, Sugiyama S, Yoshida A, Hieshima K, Miyamoto F, Kajiwara K, et al. Body muscle-to-fat ratio gender-specific cut-off values for impaired insulin sensitivity in patients with treatment-naïve type 2 Diabetes Mellitus. Endocrine. 2019;66(3):503–8.

Article  CAS  PubMed  Google Scholar 

Dedda UD, Ranucci M, Porta A, Bari V, Ascari A, Fantinato A, et al. The combined effects of the microcirculatory status and cardiopulmonary bypass on platelet count and function during cardiac Surgery. Clin Hemorheol Microcirc. 2018;70(3):327–37.

Article  PubMed  Google Scholar 

Krychtiuk KA, Kaun C, Hohensinner PJ, Stojkovic S, Seigner J, Kastl SP, et al. Anti-thrombotic and pro-fibrinolytic effects of levosimendan in human endothelial cells in vitro. Vascul Pharmacol. 2017;90:44–50.

Article  CAS  PubMed  Google Scholar 

Koning NJ, Vonk ABA, Vink H, Boer C. Side-by-side alterations in glycocalyx thickness and perfused microvascular density during Acute Microcirculatory alterations in cardiac Surgery. Microcirculation. 2016;23(1):69–74.

Article  PubMed  Google Scholar 

Flick M, Duranteau J, Scheeren TWL, Saugel B. Monitoring of the Sublingual Microcirculation during Cardiac Surgery: current knowledge and future directions. J Cardiothorac Vasc Anesth. 2020;34(10):2754–65.

Article  PubMed  Google Scholar 

Chien L-C, Lu KJQ, Wo CCJ, Shoemaker WC. Hemodynamic patterns preceding circulatory deterioration and death after trauma. J Trauma. 2007;62(4):928–32.

PubMed  Google Scholar 

Lima A, Bommel Jv, Jansen TC, Ince C, Bakker J. Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care. 2009;13(Suppl 5):13.

Article  Google Scholar 

Backer DD, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010;16(3):250–4.

Article  PubMed  Google Scholar 

Flammer J, Konieczka K, Bruno RM, Virdis A, Flammer AJ, Taddei S. The eye and the heart. Eur Heart J. 2013;34(17):1270–8.

Article  PubMed  PubMed Central  Google Scholar 

Schallek J, Geng Y, Nguyen H, Williams DR. Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Invest Ophthalmol Vis Sci. 2013;54(13):8237–50.

Article  PubMed  PubMed Central  Google Scholar 

Ashimatey BS, Zhou X, Chu Z, Alluwimi M, Wang RK, Kashani AH. Variability of vascular reactivity in the Retina and Choriocapillaris to Oxygen and Carbon Dioxide using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2023;64(2):9.

Article  PubMed  PubMed Central  Google Scholar 

Yu PK, Balaratnasingam C, Xu J, Morgan WH, Mammo Z, Han S, et al. Label-free density measurements of Radial Peripapillary capillaries in the human retina. PLoS ONE. 2015;10(8):e0135151.

Article  PubMed  PubMed Central  Google Scholar 

Henkind P. Radial peripapillary capillaries of the retina. I. anatomy: human and comparative. Br J Ophthalmol. 1967;51(2):115–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64.

Vujosevic S, Muraca A, Gatti V, Masoero L, Br

留言 (0)

沒有登入
gif