Phenotypic and genotypic characterization of colistin-resistant Escherichia Coli with mcr-4, mcr-5, mcr-6, and mcr-9 genes from broiler chicken and farm environment

Angulo FJ, Nargund VN, Chiller TC. Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. J Vet Med B Infect Dis Vet Public Health. 2004;51(8–9):374–9. https://doi.org/10.1111/j.1439-0450.2004.00789.x.

Article  CAS  PubMed  Google Scholar 

Salinas L, Cardenas P, Johnson TJ, Vasco K, Graham J, Trueba G. Diverse commensal Escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. mSphere. 2019;4(3):e00316–19. https://doi.org/10.1128/mSphere.00316-19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718–33. https://doi.org/10.1128/CMR.00002-11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akond MA, Hassan SMR, Alam S, Shirin M. Antibiotic resistance of Escherichia Coli isolated from poultry and poultry environment of Bangladesh. Am J Environ Sci. 2009;5(1):47–52. https://doi.org/10.3844/ajessp.2009.47.52.

Article  CAS  Google Scholar 

Rasheed MU, Thajuddin N, Ahamed P, Teklemariam Z, Jamil K. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev Inst Med Trop Sao Paulo. 2014;56(4):341–6. https://doi.org/10.1590/s0036-46652014000400012.

Article  PubMed  PubMed Central  Google Scholar 

Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30(2):557–96. https://doi.org/10.1128/CMR.00064-16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

WHO. Critically important antimicrobials for human medicine. 2019.

Liu Y, Liu JH. Monitoring colistin resistance in food animals, an urgent threat. Expert Rev Anti Infect Ther. 2018;16(6):443–6. https://doi.org/10.1080/14787210.2018.1481749.

Article  CAS  PubMed  Google Scholar 

Poirel L, Nordmann P. Emerging plasmid-encoded colistin resistance: the animal world as the culprit? J Antimicrob Chemother. 2016;71(8):2326–7. https://doi.org/10.1093/jac/dkw074.

Article  CAS  PubMed  Google Scholar 

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8. https://doi.org/10.1016/S1473-3099(15)00424-7.

Article  CAS  PubMed  Google Scholar 

Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother. 2017;72(12):3317–24. https://doi.org/10.1093/jac/dkx327.

Article  CAS  PubMed  Google Scholar 

Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017;22(31):30589. https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589.

Article  PubMed  PubMed Central  Google Scholar 

Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016;21(27):30280. https://doi.org/10.2807/1560-7917.ES.2016.21.27.30280.

Article  Google Scholar 

Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7(1):122. https://doi.org/10.1038/s41426-018-0124-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kempf I, Jouy E, Chauvin C. Colistin use and colistin resistance in bacteria from animals. Int J Antimicrob Agents. 2016;48(6):598–606. https://doi.org/10.1016/j.ijantimicag.2016.09.016.

Article  CAS  PubMed  Google Scholar 

Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–35. https://doi.org/10.1016/j.ijantimicag.2016.11.029.

Article  CAS  PubMed  Google Scholar 

Wang Y, Xu C, Zhang R, Chen Y, Shen Y, Hu F, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis. 2020;20(10):1161–71. https://doi.org/10.1016/S1473-3099(20)30149-3.

Article  CAS  PubMed  Google Scholar 

Valiakos G, Kapna I. Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective. A systematic review. Vet Sci. 2021;8(11):265. https://doi.org/10.3390/vetsci8110265.

Article  PubMed  PubMed Central  Google Scholar 

Aklilu E, Raman K. MCR-1 gene encoded colistin-resistant Escherichia coli in raw chicken meat and bean sprouts in Malaysia. Int J Microbiol. 2020;2020:8853582. https://doi.org/10.1155/2020/8853582.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aklilu E, Harun A, Singh KKB. Molecular characterization of bla(NDM), bla(OXA-48), mcr-1 and bla(TEM-52) positive and concurrently carbapenem and colistin resistant and extended spectrum beta-lactamase producing Escherichia coli in chicken in Malaysia. BMC Vet Res. 2022;18(1):190. https://doi.org/10.1186/s12917-022-03292-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): disease, carriage and clones. J Infect. 2015;71(6):615–26. https://doi.org/10.1016/j.jinf.2015.09.009.

Article  PubMed  Google Scholar 

Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555–8. https://doi.org/10.1128/AEM.66.10.4555-4558.2000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson JR, Russo TA. Extraintestinal pathogenic Escherichia coli: “the other bad E coli.” J Lab Clin Med. 2002;139(3):155–62. https://doi.org/10.1067/mlc.2002.121550.

Article  CAS  PubMed  Google Scholar 

Yu J, Sun Z, Liu W, Xi X, Song Y, Xu H, et al. Multilocus sequence typing of Streptococcus thermophilus from naturally fermented dairy foods in China and Mongolia. BMC Microbiol. 2015;15(1):236. https://doi.org/10.1186/s12866-015-0551-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Sanchez S, Hofacre C, Maurer JJ, Harmon BG, Lee MD. Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Appl Environ Microbiol. 2003;69(2):901–8. https://doi.org/10.1128/AEM.69.2.901-908.2003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandal AK, Talukder S, Hasan MM, Tasmim ST, Parvin MS, Ali MY, et al. Epidemiology and antimicrobial resistance of Escherichia coli in broiler chickens, farmworkers, and farm sewage in Bangladesh. Vet Med Sci. 2022;8(1):187–99. https://doi.org/10.1002/vms3.664.

Article  CAS  PubMed  Google Scholar 

Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J. 2009;41(2):117–22.

Google Scholar 

Alnahass R, Khaliel S, Ellakany H, Ibrahim M. Comparison between bacteriological isolation and molecular detection of E. coli from chickens suffering from colibacillosis and/or diarrhea. Alex J Vet Sci. 2017;49(2). https://doi.org/10.5455/ajvs.219057.

Yu KX, Thong KL. Multiplex PCR for simultaneous detection of virulence genes in Escherichia coli. Malays J Sci. 2009;28(1):1–14.

Article  Google Scholar 

Elmi SA, Simons D, Elton L, Haider N, Abdel Hamid MM, Shuaib YA, et al. Identification of risk factors associated with resistant Escherichia coli isolates from poultry farms in the east coast of Peninsular Malaysia: a cross sectional study. Antibiotics (Basel). 2021;10(2):117. https://doi.org/10.3390/antibiotics10020117.

Article  CAS  PubMed  Google Scholar 

Aliyu AB, Saleha AA, Jalila A, Zunita Z. Risk factors and spatial distribution of extended spectrum beta-lactamase-producing- Escherichia coli at retail poultry meat markets in Malaysia: a cross-sectional study. BMC Public Health. 2016;16(1):699. https://doi.org/10.1186/s12889-016-3377-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2021.

Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IM, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018;23(6):29–39. https://doi.org/10.2807/1560-7917.ES.2018.23.6.17-00672.

Article  Google Scholar 

Borowiak M, Baumann B, Fischer J, Thomas K, Deneke C, Hammerl JA, et al. Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (2011–2018) in Germany. Front Microbiol. 2020;11(80):80. https://doi.org/10.3389/fmicb.2020.00080.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif