Evaluation of bone mineral density in adolescent idiopathic scoliosis using a three-dimensional finite element model: a retrospective study

Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371(9623):1527–37.

Article  PubMed  Google Scholar 

Cheng JC, Guo X, Sher AH. Persistent osteopenia in adolescent idiopathic scoliosis A longitudinal follow up study. Spine (Phila Pa 1976). 1999;24(12):1218–22.

Article  CAS  PubMed  Google Scholar 

Li XF, Li H, Liu ZD, Dai LY. Low bone mineral status in adolescent idiopathic scoliosis. Eur Spine J. 2008;17(11):1431–40.

Article  PubMed  PubMed Central  Google Scholar 

Diarbakerli E, Savvides P, Wihlborg A, Abbott A, Bergstrom I, Gerdhem P. Bone health in adolescents with idiopathic scoliosis. Bone Joint J. 2020;102B(2):268–72.

Article  Google Scholar 

Mazess RB, Barden HS, Bisek JP, Hanson J. Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr. 1990;51(6):1106–12.

Article  CAS  PubMed  Google Scholar 

Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon CM. International Society for Clinical D: Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):225–42.

Article  PubMed  Google Scholar 

Briggs AM, Wark JD, Kantor S, Fazzalari NL, Greig AM, Bennell KL. Bone mineral density distribution in thoracic and lumbar vertebrae: An ex vivo study using dual energy X-ray absorptiometry. Bone. 2006;38(2):286–8.

Article  PubMed  Google Scholar 

Mai HT, Mitchell SM, Hashmi SZ, Jenkins TJ, Patel AA, Hsu WK. Differences in bone mineral density of fixation points between lumbar cortical and traditional pedicle screws. Spine J. 2016;16(7):835–41.

Article  PubMed  Google Scholar 

Zaidi Q, Danisa OA, Cheng W. Measurement techniques and utility of hounsfield unit values for assessment of bone quality prior to spinal instrumentation a review of current literature. Spine. 2019;44(4):E239–44.

Article  PubMed  Google Scholar 

Min K, Waelchli B, Hahn F. Primary thoracoplasty and pedicle screw instrumentation in thoracic idiopathic scoliosis. Eur Spine J. 2005;14(8):777–82.

Article  PubMed  PubMed Central  Google Scholar 

Di Silvestre M, Parisini P, Lolli F, Bakaloudis G. Complications of thoracic pedicle screws in scoliosis treatment. Spine (Phila Pa 1976). 2007;32(15):1655–61.

Article  PubMed  Google Scholar 

Pauchard Y, Fitze T, Browarnik D, Eskandari A, Pauchard I, Enns-Bray W, Palsson H, Sigurdsson S, Ferguson SJ, Harris TB, et al. Interactive graph-cut segmentation for fast creation of finite element models from clinical ct data for hip fracture prediction. Comput Methods Biomech Biomed Engin. 2016;19(16):1693–703.

Article  PubMed  PubMed Central  Google Scholar 

Zhou C, Jin S, Willing R. Simulation of extracellular matrix remodeling by fibroblast cells in soft three-dimensional bioresorbable scaffolds. Biomech Model Mechanobiol. 2016;15(6):1685–98.

Article  PubMed  Google Scholar 

Cook SD, Harding AF, Morgan EL, Nicholson RJ, Thomas KA, Whitecloud TS, Ratner ES. Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop. 1987;7(2):168–74.

Article  CAS  PubMed  Google Scholar 

Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Lam TP, Ng BK, Cheng JC. Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos Int. 2005;16(12):1924–32.

Article  PubMed  Google Scholar 

Prakash, Prabhu LV, Saralaya VV, Pai MM, Ranade AV, Singh G, Madhyastha S: Vertebral body integrity: a review of various anatomical factors involved in the lumbar region. Osteoporos Int 2007, 18(7):891–903.

Snyder BD, Katz DA, Myers ER, Breitenbach MA, Emans JB. Bone density accumulation is not affected by brace treatment of idiopathic scoliosis in adolescent girls. J Pediatr Orthop. 2005;25(4):423–8.

Article  PubMed  Google Scholar 

Cheuk KY, Hu Y, Tam EMS, Shi L, Yu FWP, Hung VWY, Lai KCY, Cheng WHW, Yip BHK, Qin L, et al. Bone measurements at multiple skeletal sites in adolescent idiopathic scoliosis-an in vivo correlation study using DXA, HR-pQCT and QCT. Arch Osteoporos. 2019;14(1):70.

Article  PubMed  Google Scholar 

Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, Guo X. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res. 2000;15(8):1587–95.

Article  CAS  PubMed  Google Scholar 

Lam TP, Hung VW, Yeung HY, Tse YK, Chu WC, Ng BK, Lee KM, Qin L, Cheng JC. Abnormal bone quality in adolescent idiopathic scoliosis: a case-control study on 635 subjects and 269 normal controls with bone densitometry and quantitative ultrasound. Spine (Phila Pa 1976). 2011;36(15):1211–7.

Article  PubMed  Google Scholar 

Zaidi Q, Danisa OA, Cheng W. Measurement techniques and utility of hounsfield unit values for assessment of bone quality prior to spinal instrumentation. Spine. 2019;44(4):E239–44.

Article  PubMed  Google Scholar 

Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK, Melton LJ 3rd, Riggs BL, Amin S, Muller R, et al. Bone structure at the distal radius during adolescent growth. J Bone Miner Res. 2009;24(6):1033–42.

Article  PubMed  Google Scholar 

Choi MK, Kim SM, Lim JK. Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir (Wien). 2016;158(7):1421–7.

Article  PubMed  Google Scholar 

Pappou IP, Girardi FP, Sandhu HS, Parvataneni HK, Cammisa FP Jr, Schneider R, Frelinghuysen P, Lane JM. diskordantly high spinal bone mineral density values in patients with adult lumbar scoliosis. Spine (Phila Pa 1976). 2006;31(14):1614–20.

Article  PubMed  Google Scholar 

Deshpande N, Hadi MS, Lillard JC, Passias PG, Linzey JR, Saadeh YS, LaBagnara M, Park P. Alternatives to DEXA for the assessment of bone density: a systematic review of the literature and future recommendations. J Neurosurg Spine. 2023;38(4):436–45.

Article  PubMed  Google Scholar 

Smith A, Khan M, Varney E, Liu B, Roda M, Reed C, Morris R, Joyner D, Lirette ST, Mosley T. Opportunistic bone density screening for the abdominal radiologist using colored CT images: a pilot retrospective study. Abdom Radiol (NY). 2019;44(2):775–82.

Article  PubMed  Google Scholar 

Wagner SC, Formby PM, Helgeson MD, Kang DG. Diagnosing the undiagnosed: osteoporosis in patients undergoing lumbar fusion. Spine (Phila Pa 1976). 2016;41(21):E1279–83.

Article  PubMed  Google Scholar 

Kim K, Song SH, Kim IJ, Jeon YK. Is dual-energy absorptiometry accurate in the assessment of bone status of patients with chronic kidney disease? Osteoporos Int. 2021;32(9):1859–68.

Article  CAS  PubMed  Google Scholar 

Kim KH, Kim TH, Kim SW, Kim JH, Lee HS, Chang IB, Song JH, Hong YK, Oh JK. Significance of measuring lumbar spine 3-dimensional computed tomography hounsfield units to predict screw loosening. World Neurosurg. 2022;165:e555–62.

Article  PubMed  Google Scholar 

Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001;1(6):402–7.

Article  CAS  PubMed  Google Scholar 

Ishikawa K, Toyone T, Shirahata T, Kudo Y, Matsuoka A, Maruyama H, Hayakawa C, Tani S, Sekimizu M, Tsuchiya K, et al. A novel method for the prediction of the pedicle screw stability: regional bone mineral density around the screw. Clin Spine Surg. 2018;31(9):E473–80.

Article  PubMed  Google Scholar 

Zhang R, Gao H, Li H, Xing T, Jia C, Zhang J, Dong F, Shen C. Differences in bone mineral density of trajectory between lumbar cortical and traditional pedicle screws. J Orthop Surg Res. 2019;14(1):128.

Article  PubMed  PubMed Central  Google Scholar 

Yagi M, Fujita N, Tsuji O, Nagoshi N, Asazuma T, Ishii K, Nakamura M, Matsumoto M, Watanabe K. Low bone-mineral density is a significant risk for proximal junctional failure after surgical correction of adult spinal deformity: a propensity score-matched analysis. Spine (Phila Pa 1976). 2018;43(7):485–91.

Article  PubMed  Google Scholar 

Yeh YC, Niu CC, Chen LH, Chen WJ, Lai PL. The correlations between the anchor density and the curve correction of adolescent idiopathic scoliosis surgery. BMC Musculoskelet Disord. 2019;20(1):497.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif