Long Noncoding RNAs MEG3, TUG1, and hsa-miR-21-3p Are Potential Diagnostic Biomarkers for Coronary Artery Disease

Malakar A.K., Choudhury D., Halder B., Paul P., Uddin A., Chakraborty S. 2019. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell Physiol. 234 (10), 16812–16823. https://doi.org/10.1002/jcp.28350

Article  CAS  PubMed  Google Scholar 

Wan Q., Qian S., Huang Y., Zhang Y., Peng Z., Li Q., Shu B., Zhu L., Wang M. 2020. Drug discovery for coronary artery disease. Adv. Exp. Med. Biol. 1177, 297–339.

Article  CAS  PubMed  Google Scholar 

Hunt S.A., Abraham W.T., Chin M.H., Feldman A.M., Francis G.S., Ganiats T.G., Jessup M., Konstam M.A., Mancini D.M., Michl K., Oates J.A., Rahko P.S., Silver M.A., Stevenson L.W., Yancy C.W. 2009. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: A report of the American college of cardiology foundation/American heart association task force on practice guidelines developed in collaboration with the International society for heart and lung transplantation. J. Am. Coll. Cardiol. 53 (15), e1–e90. https://doi.org/10.1016/j.jacc.2008.11.013

Article  PubMed  Google Scholar 

Netto J., Teren A., Burkhardt R., Willenberg A., Beutner F., Henger S., Schuler G., Thiele H., Isermann B., Thiery J., Scholz M., Kaiser T. 2022. Biomarkers for non-invasive stratification of coronary artery disease and prognostic impact on long-term survival in patients with stable coronary heart disease. Nutrients. 14 (16), 3433. https://doi.org/10.3390/nu14163433

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parsanathan R., Jain S.K. 2020. Novel invasive and noninvasive cardiac-specific biomarkers in obesity and cardiovascular diseases. Metab. Syndr. Relat. Disord. 18 (1), 10–30. https://doi.org/10.1089/met.2019.0073

Article  PubMed  PubMed Central  Google Scholar 

Cardona-Monzonís A., García-Giménez J.L., Mena-Mollá S., Pareja-Galeano H., de la Guía-Galipienso F., Lippi G., Pallardó F.V., Sanchis-Gomar F. 2020. Non-coding RNAs and coronary artery disease. In Advances in Experimental Medicine and Biology. Vol. 1229. Xiao J., Ed. Singapore: Springer, 273–285. https://doi.org/10.1007/978-981-15-1671-9_16

Poller W., Dimmeler S., Heymans S., Zeller T., Haas J., Karakas M., Leistner D.M., Jakob P., Nakagawa S., Blankenberg S., Engelhardt S., Thum T., Weber C., Meder B., Hajjar R., Landmesser U. 2018. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J. 39 (29), 2704–2716. https://doi.org/10.1093/eurheartj/ehx165

Article  CAS  PubMed  Google Scholar 

Adams V. 2019. Assessment of micro ribonucleic acids after exercise: Is this the future to detect coronary artery disease at its early stage? Eur. J. Prev. Cardiol. 26 (4), 346–347. https://doi.org/10.1177/2047487318811958

Article  PubMed  Google Scholar 

Zou L., Ma X., Lin S., Wu B., Chen Y., Peng C. 2019 Long noncoding RNA-MEG3 contributes to myocardial ischemia-reperfusion injury through suppression of MIR-7-5p expression. Biosci. Rep. 39 (8), BSR20190210. https://doi.org/10.1042/BSR20190210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piccoli M.T., Gupta S.K., Viereck J., Foinquinos A., Samolovac S., Kramer F.L., Garg A., Remke J., Zimmer K., Batkai S., Thum T. 2017. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res. 121 (5), 575–583. https://doi.org/10.1161/CIRCRESAHA.117.310624

Article  CAS  PubMed  Google Scholar 

Zhang J., Liang Y., Huang X., Guo X., Liu Y., Zhong J., Yuan J. 2019. STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci. Rep. 9 (1), 460. https://doi.org/10.1038/s41598-018-36369-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Z., He Y., Li D., Fang X., Shang T., Zhang H., Zheng X. 2017. Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21. Am. J. Transl. Res. 9 (7), 3326–3335.

CAS  PubMed  PubMed Central  Google Scholar 

Li F.P., Lin D.Q., Gao L.Y. 2018. LncRNA TUG1 promotes proliferation of vascular smooth muscle cell and atherosclerosis through regulating miRNA-21/PTEN axis. Eur. Rev. Med. Pharmacol. Sci. 22 (21), 7439–7447. https://doi.org/10.26355/eurrev-201811-16284

Article  PubMed  Google Scholar 

Guo Y., Sun Z., Chen M., Lun J. 2021. LncRNA TUG1 regulates proliferation of cardiac fibroblast via the miR-29b-3p/TGF-β1 axis. Front. Cardiovasc. Med. 8, 646806. https://doi.org/10.3389/fcvm.2021.646806

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang G., Ni X. 2021. Knockdown of TUG1 rescues cardiomyocyte hypertrophy through targeting the miR-497/ MEF2C axis. Open Life Sci. 16 (1), 242–251. https://doi.org/10.1515/biol-2021-0025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foulds C.E., Tsimelzon A., Long W., Le A., Tsai S.Y., Tsai M.J., O’Malley B.W. 2010. Research resource: Expression profiling reveals unexpected targets and functions of the human steroid receptor RNA activator (SRA) gene. Mol. Endocrinol. 24 (5), 1090–1105. https://doi.org/10.1210/me.2009-0427

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren S., Zhang Y., Li B., Bu K., Wu L., Lu Y., Lu Y., Qiu Y. 2019. Downregulation of lncRNA‑SRA participates in the development of cardiovascular disease in type II diabetic patients. Exp. Ther. Med. 17 (5), 3367–3372. https://doi.org/10.3892/etm.2019.7362

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang S., Sun J. 2018. LncRNA SRA deregulation contributes to the development of atherosclerosis by causing dysfunction of endothelial cells through repressing the expression of adipose triglyceride lipase. Mol. Med. Rep. 18 (6), 5207–5214. https://doi.org/10.3892/mmr.2018.9497

Article  CAS  PubMed  Google Scholar 

Huang Z., Shi J., Gao Y., Cui C., Zhang S., Li J., Zhou Y., Cui Q. 2019. HMDD v3.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 47 (D1), D1013–D1017. https://doi.org/10.1093/nar/gky1010

Article  CAS  PubMed  Google Scholar 

Huang H.Y., Lin Y.C., Li J., Huang K.Y., Shrestha S., Hong H.C., Tang Y., Chen Y.G., Jin C.N., Yu Y., Xu J.T., Li Y.M., Cai X.X., Zhou Z.Y., Chen X.H., Pei Y.Y., Hu L., Su J.J., Cui S.D., Wang F., Xie Y.Y., Ding S.Y., Luo M.F., Chou C.H., Chang N.W., Chen K.W., Cheng Y.H., Wan X.H., Hsu W.L., Lee T.Y., Wei F.X., Huang H.D. 2020. MiRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 48 (D1), D148–D154. https://doi.org/10.1093/nar/gkz896

Article  CAS  PubMed  Google Scholar 

Chang L., Zhou G., Soufan O., Xia J. 2020. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 48 (W1), W244–W251. https://doi.org/10.1093/nar/gkaa467

Article  CAS  PubMed  PubMed Central  Google Scholar 

Metsalu T., Vilo J. 2015. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43 (W1), W566–W570. https://doi.org/10.1093/nar/gkv468

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. 2003. Cytoscape: A software environment for integrated models. Genome Res. 13 (11), 2498‒2504. https://doi.org/10.1101/gr.1239303

Article  CAS  PubMed  PubMed Central  Google Scholar 

Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCΤ method. Methods. 25 (4), 402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Saygili H., Bozgeyik I., Yumrutas O., Akturk E., Bagis H. 2021. Differential expression of long noncoding RNAs in patients with coronary artery disease. Mol. Syndromol. 12 (6), 372–378. https://doi.org/10.1159/000517077

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai Y., Zhang Q., Su Y., Pu Z., Li K. 2019. Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/smad1 axis. Int. Heart J. 60 (2), 444–450. https://doi.org/10.1536/IHJ.18-195

Article  CAS  PubMed  Google Scholar 

Wu H., Zhao Z.A., Liu J., Hao K., Yu Y., Han X., Li J., Wang Y., Lei W., Dong N., Shen Z., Hu S. 2018. Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther. 25 (8), 511–523. https://doi.org/10.1038/s41434-018-0045-4

Article  CAS  PubMed  Google Scholar 

Su Q., Liu Y., Lv X.W., Dai R.X., Yang X.H., Kong B.H. 2020. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am. J. Physiol. Heart Circ. Physiol. 318 (2), H332–H344. https://doi.org/10.1152/ajpheart.00444.2019

Article  CAS  PubMed  Google Scholar 

Yan H.Y., Bu S.Z., Zhou W.B., Mai Y.F. 2018. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. Eur. Rev. Med. Pharmacol. Sci. 22 (20), 6922–6929.

PubMed  Google Scholar 

Kumar D., Narang R., Sreenivas V., Rastogi V., Bhati-a J., Saluja D., Srivastava K. 2020. Circulatory miR-133b and miR-21 as novel biomarkers in early prediction and diagnosis of coronary artery disease. Genes (Basel) . 11 (2), 164. https://doi.org/10.3390/genes11020164

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren J., Zhang J., Xu N., Han G., Geng Q., Song J., Li S., Zhao J., Chen H. 2013. Signature of circulating MicroRNAs As potential biomarkers in vulnerable coronary artery disease. PLoS One. 8 (12), e80738. https://doi.org/10.1371/journal.pone.0080738

Article  CAS 

留言 (0)

沒有登入
gif