The Protective Action of Hsp70 and Hydrogen Sulfide Donors in THP-1 Macrophages in the Lipopolysaccharide-Induced Inflammatory Response by Modulating Endocytosis

Hersoug L-G., Møller P., Loft S. 2016. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: Implications for inflammation and obesity. Obes. Rev. 17 (4), 297–312.

Article  CAS  PubMed  Google Scholar 

Fuke N., Nagata N., Suganuma H., Ota T. 2019. Regulation of gut microbiota and metabolic endotoxemia with dietary factors. Nutrients. 11 (10), 2277.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orecchioni M., Ghosheh Y., Pramod A.B., Ley K. 2019. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. 10, 1084.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Page M.J., Kell D.B., Pretorius E. 2022. The role of lipopolysaccharide-induced cell signalling in chronic inflammation. Chronic Stress (Thousand Oaks). 8, 6, 24705470221076390. https://doi.org/10.1177/24705470221076390

Article  Google Scholar 

Mohammad S., Thiemermann C. 2021. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front. Immunol. 11, 594150.

Article  PubMed  PubMed Central  Google Scholar 

Evgen’ev M.B., Garbuz D.G., Zatsepina O.G. 2014. Heat Shock Proteins and Whole Body Adaptation to Extreme Environments. Berlin, Germany: Springer.

Book  Google Scholar 

Hu C., Yang J., Qi Z., Wu H., Wang B., Zou F., Mei H., Liu J., Wang W., Liu Q. 2022. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm. 3 (3), e161. https://doi.org/10.1002/mco2.161

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aneja R., Odoms K., Dunsmore K., Shanley T.P., Wong H.R. 2006. Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J. Immunol. 177, 7184–7192.

Article  CAS  PubMed  Google Scholar 

Ghosh A.K., Sinha D., Mukherjee S., Biswas R., Biswas T. 2015. LPS stimulates and Hsp70 down-regulates TLR4 to orchestrate differential cytokine response of culture-differentiated innate memory CD8+ T cells. Cytokine. 73, 44–52.

Article  CAS  PubMed  Google Scholar 

Kustanova G.A., Murashev A.N., Karpov V.L., Margulis B.A., Guzhova I.V., Prokhorenko I.R., Grachev S.V., Evgen’ev M.B. 2006. Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones. 11, 276–286.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rozhkova E., Yurinskaya M., Zatsepina O., Garbuz D., Surkov S., Murashev A., Ostrov V., Margulis B., Evgen’ev M., Vinokurov M. 2010. Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann. N.Y. Acad. Sci. 1197, 94–107.

Article  CAS  PubMed  Google Scholar 

Yurinskaya M., Zatsepina O.G., Vinokurov M.G., Bobkova N.V., Garbuz D.G., Morozov A.V., Kulikova D.A., Mitkevich V.A., Makarov A.A., Funikov S.Y., Evgen’ev M.B. 2015. The fate of exogenous human HSP70 introduced into animal cells by different means. Curr. Drug Delivery 12 (5), 524–532.

Article  CAS  Google Scholar 

Afrazi A., Sodhi C.P., Good M., Jia H., Siggers R., Yazji I., Ma C., Neal M.D., Prindle T., Grant Z.S., Branca M., Ozolek J., Eugene Chang E., Hackam D.J. 2012. Intracellular heat shock protein-70 negatively regulates TLR4 signaling in the newborn intestinal epithelium. J. Immunol. 188, 4543–4557.

Article  CAS  PubMed  Google Scholar 

Kimura H. 2014. Hydrogen sulfide and polysulfides as biological mediators. Molecules. 19, 16146–16157.

Article  PubMed  PubMed Central  Google Scholar 

Dilek N., Papapetropoulos A., Toliver-Kinsky T., Szabo C. 2020. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol. Res. 161, 105119.

Article  CAS  PubMed  Google Scholar 

Xiao Q., Ying J., Xiang L., Zhang C. 2018. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine. 97, e13065.

Article  PubMed  PubMed Central  Google Scholar 

Khattak S., Rauf M.A., Khan N.H., Zhang Q.Q., Chen H.J., Muhammad P., Ansari M.A., Alomary M.N., Jahangir M., Zhang C.Y., Ji X.Y., Wu D.D. 2022. Hydrogen sulfide biology and its role in cancer. Molecules. 27 (11), 3389. https://doi.org/10.3390/molecules27113389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu C., Liu Q., Li X., Wei R., Ge T., Zheng X., Li B., Liu K., Cui R. 2022. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front. Endocrinol. (Lausanne). 13, 934231. https://doi.org/10.3389/fendo.2022.934231

Article  Google Scholar 

Yurinskaya M.M., Krasnov G.S., Kulikova D.A., Zatsepina O.G., Vinokurov M.G., Chuvakova L.N., Rezvykh A.P., Funikov S.Y., Morozov A.V., Evgen’ev M.B. 2020. H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm. Res. 69 (5), 481–495.

Article  CAS  PubMed  Google Scholar 

Onikienko S., Vinokurov M., Yurinskaya M., Zemlyanoi A., Abkin S., Shaykhutdinova E., Palikov V., Ivanov A., Smirnova O., Fedyakina I., Bychkova N., Zatsepina O., Garbuz D., Evgen’ev M. 2022. The effects of H2S and recombinant human Hsp70 on inflammation induced by SARS and other agents in vitro and in vivo. Biomedicines. 10 (9), 2155. https://doi.org/10.3390/biomedicines

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du Y., Liu X.H., Zhu H.C., Wang L., Wang Z.S., Ning J.Z., Xiao C.C. 2019. Hydrogen sulfide treatment protects against renal ischemia−reperfusion injury via induction of heat shock proteins in rats. Iran J. Basic Med. Sci. 22 (1), 99–105.

PubMed  PubMed Central  Google Scholar 

Yurinskaya M.M., Garbuz D.G., Afanasiev V.N., Evgen’ev M.B., Vinokurov M.G. 2020. The combined effect of H2S donor GYY4137 and recombinant Hsp70 on LPS-induced activation of human neuroblastoma SH-SY5Y. Mol. Biol. (Moscow). 54 (6), 894–903. https://doi.org/10.1134/S002689332006014X

Article  CAS  Google Scholar 

Gurskiy Y.G., Garbuz D.G., Soshnikova N.V., Krasnov A.N., Deikin A., Lazarev V.F., Sverchinskyi D., Margulis B.A., Zatsepina O.G., Karpov V.L., Belzhelarskaya S.N., Feoktistova E., Georgieva S.G., Evgen’ev M.B. 2016. The development of modified human Hsp70 (HSPA1A) and its production in the milk of transgenic mice. Cell Stress Chaperones. 21 (6), 1055–1064.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yurinskaya M., Kochetkova O., Shabarchina L., Antonova O., Suslikov A., Evgen’ev M., Vinokurov M. 2017. Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes. Cell Stress Chaperones. 22 (1), 163–171.

Article  CAS  PubMed  Google Scholar 

Pfister H., Hennet T., Jungi T. 1992. Lipopolysaccharide synergizes with tumour necrosis factor-alpha in cytotoxicity assays. Immunology. 77 (3), 473–476.

CAS  PubMed  PubMed Central  Google Scholar 

Lin V.S., Lippert A.R., Chang C.J. 2013. Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc. Natl. Acad. Sci. U. S. A. 110 (18), 7131–7135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giraldo E., Martin-Cordero L., Garcia J., Gerhmann M., Multhoff G., Ortega E. 2010. Exercise-induced extracellular 72 kDa heat shock protein (Hsp72) stimulates neutrophil phagocytic and fungicidal capacities via TLR-2. Eur. J. Appl. Physiol. 108 (2), 217–225.

Article  CAS  PubMed  Google Scholar 

Ciesielska A., Matyjek M., Kwiatkowska K. 2021. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell. Mo.l Life Sci. 78 (4), 1233–1261.

Article  CAS  Google Scholar 

Płyciennikowska A., Hromada-Judycka A., Borzęcka K., Kwiatkowska K. 2015. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 72, 557–581.

Article  Google Scholar 

Pérez S., Rius-Pérez S. 2022. Macrophage polarization and reprogramming in acute nflammation: A redox perspective. Antioxidants (Basel). 11 (7), 1394.

Article  PubMed  PubMed Central  Google Scholar 

Nocella C., D’Amico A., Cammisotto V., Bartimoccia S., Castellani V., Loffredo L., Marini L., Ferrara G., Testa M., Motta G., Benazzi B., Zara F., Frati G., Sciarretta S., Pignatelli P., Violi F., Carnevale R., Group S. 2023. Structure, activation, and regulation of Nox2: At the crossroad between the innate immunity and oxidative stress-mediated pathologies. Antioxidants (Basel). 12 (2), 429.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trevelin S.C., Shah A.M., Lombardi G. 2020. Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator. Immunol. Lett. 221, 39–48.

Article  CAS  PubMed  Google Scholar 

Van Acker T., Tavernier J., Peelman F. 2019. The small GTPase Arf6: An overview of its mechanisms of action and of its role in host-pathogen interactions and innate immunity. Int. J. Mol. Sci. 20 (9), 2209.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ejlerskov P., Christensen D.P., Beyaie D., Burritt J.B., Paclet M., Gorlach A., van Deurs B., Vilhardt F. 2012. NADPH oxidase is internalized by clathrin-coated pits and localizes to a Rab27A/B GTPase-regulated secretory compartment in activated macrophages. J. Biol. Chem. 287 (7), 4835–4852

Article  CAS  PubMed 

留言 (0)

沒有登入
gif