The study of the impact of additional chromosomal aberrations and c-MYC and BCR::ABL1 genes amplification on CML patient’s characteristics: relation to haematological parameters and patient outcome

Minciacchi VR, Kumar R, Krause DS (2021) Chronic myeloid leukaemia: a model disease of the past, present and future. Cells 10(1):117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnes EJ, Eide CA, Kaempf A, Bottomly D, Romine KA, Wilmot B et al (2023) Secondary fusion proteins as a mechanism of BCR::ABL1 kinase-independent resistance in chronic myeloid leukaemia. Br J Haematol 200:323–328. https://doi.org/10.1111/bjh.18515

Article  CAS  PubMed  Google Scholar 

Zhao H, Chen Y, Shen C et al (2021) Breakpoint mapping of a t(9;22; 12) chronic myeloid leukaemia patient with e14a3 BCR-ABL1 transcript using Nanopore sequencing. J Gene Med 23:e3276. https://doi.org/10.1002/jgm.3276

Article  CAS  PubMed  Google Scholar 

Krishna Chandran R, Geetha N, Sakthivel KM, Suresh Kumar R, Jagathnath Krishna KMN, Sreedharan H (2019) Impact of additional chromosomal aberrations on the disease progression of chronic myelogenous leukemia. Front Oncol 9:88

Article  PubMed  PubMed Central  Google Scholar 

Bacher U, Haferlach T, Hiddemann W, Schnittger S, Kern W, Schoch C (2005) Additional clonal abnormalities in Philadelphia-positive ALL and CML demonstrate a different cytogenetic pattern at diagnosis and follow different pathways at progression. Cancer Genet Cytogen 157:53–61. https://doi.org/10.1016/j.cancergencyto

Article  CAS  Google Scholar 

Vincelette ND, Moon J, Kuykendall AT, Zhang L, Komrokji RS, Murphy D, Cleveland JL, Yun S (2021) C-MYC augments the proliferation and survival of hematopoietic stem cells and multipotent progenitors to drive myeloproliferative neoplasms. Blood 138(Supplement 1):28. https://doi.org/10.1182/blood-2021-146399

Article  Google Scholar 

Virgili A, Nacheva EP (2010) Genomic amplification of BCR/ABL1 and a region downstream of ABL1 in chronic myeloid leukaemia: a FISH mapping study of CML patients and cell lines. Mol Cytogenet 1(3):15. https://doi.org/10.1186/1755-8166-3-15

Article  CAS  Google Scholar 

Nardi V, Pulluqi O, Abramson JS, Dal Cin P, Hasserjian RP (2015) Routine conventional karyotyping of lymphoma staging bone marrow samples does not contribute clinically relevant information. Am J Hematol 90(6):529–533. https://doi.org/10.1002/ajh.24008

Article  PubMed  Google Scholar 

Khoury JD, Solary E, Abla O et al (2022) The 5th edition of the World health organization classification of haematolymphoid tumours myeloid and histiocytic/dendritic neoplasms. Leukemia 36:1703–1719. https://doi.org/10.1038/s41375-022-01613-1

Article  PubMed  PubMed Central  Google Scholar 

Khaled SA, Nabih O, Abdel Aziz NM, Mahran DG (2019) Myeloid leukemias: a glance at middle Eastern centers. J Blood Med 16(10):425–433. https://doi.org/10.2147/JBM.S221317

Article  Google Scholar 

Babu GK, Thanky A, Jacob LA et al (2015) Outcome of young adults with chronic myeloid leukaemia treated with upfront imatinib: a single institutional experience. J Appl Hematol 6:157–161. https://doi.org/10.4103/1658-5127.171987

Article  Google Scholar 

Phekoo KJ, Richards MA, Møller H, Schey SA (2006) South Thames haematology specialist Committee the incidence and outcome of myeloid malignancies in 2112 adult patients in southeast England. Haematologica 91(10):1400–1404

PubMed  Google Scholar 

Cai S, Zhong Z, Li X, Wang L, Wang H, You Y et al (2019) ACA rearrangement is associated with the prognosis of CML in the Era of TKI. Ann Hematol Oncol 6(6):1252

Google Scholar 

Ning L, Hu C, Lu P, Que Y, Zhu X, Li D (2020) Trends in disease burden of chronic myeloid leukemia at the global, regional, and national levels: a population-based epidemiologic study. Exp Hematol Oncol 9(1):29. https://doi.org/10.1186/s40164-020-00185-z.PMID:33292593;PMCID:PMC7607878

Article  PubMed  PubMed Central  Google Scholar 

de Haan G, Lazare SS (2018) Aging of hematopoietic stem cells. Blood 131:479–487

Article  PubMed  Google Scholar 

Verovskaya EV, Dellorusso PV, Passegué E (2019) Losing sense of self and surroundings: hematopoietic stem cell aging and Leukemic transformation. Trends Mol Med 25:494–515

Article  PubMed  PubMed Central  Google Scholar 

Azzazi M, Moussa M, Amro El-Ghammaz A, Eissa A, Hamza M (2018) Study of additional chromosomal abnormalities in young adult Egyptian chronic myeloid leukaemia patients. Egyptian J Haematol Bone marrow Transplantation 5(5):8–14

Article  Google Scholar 

Hsiao HH, Liu YC, Tsai HJ, Hsu JF, Yang WC, Chang CS, Lin SF (2011) Additional chromosome abnormalities in chronic myeloid leukemia. Kaohsiung J Med Sci 27(2):49–54. https://doi.org/10.1016/j.kjms.2010.09.001

Article  CAS  PubMed  Google Scholar 

Wang W, Tang G, Cortes JE, Liu H, Ai D, Yin CC, Li S, Khoury JD, Bueso-Ramos C, Medeiros LJ, Hu S (2015) Chromosomal rearrangement involving 11q23 locus in chronic myelogenous leukemia: a rare phenomenon frequently associated with disease progression and poor prognosis. J Hematol Oncol 8(8):32. https://doi.org/10.1186/s13045-015-0128-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Cortes JE, Tang G, Khoury JD, Wang S, Bueso-Ramos CE, DiGiuseppe JA, Chen Z, Kantarjian HM, Medeiros LJ, Hu S (2016) Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood 127(22):2742–2750. https://doi.org/10.1182/blood-2016-01-690230

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bozkurt S, Uz B, Buyukasik Y, Bektas O, Inanc A, Goker H, Kansu E (2013) Prognostic importance of additional cytogenetic anomalies in chronic myeloid leukemia. Med Oncol 30(1):443. https://doi.org/10.1007/s12032-012-0443-1

Article  PubMed  Google Scholar 

Cortes JE, Kantarjian HM, Goldberg SL, Powell BL, Giles FJ, Wetzler M, Akard L, Burke JM, Kerr R, Saleh M, Salvado A, McDougall K, Albitar M, Radich J, Rationale and Insight for Gleevec High-Dose Therapy (RIGHT) Trial Study Group (2009) High-dose imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: high rates of rapid cytogenetic and molecular responses. J Clin Oncol 27(28):4754–4759. https://doi.org/10.1200/JCO.2008.20.3869

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandran RK, Geetha N, Sakthivel KM, Aswathy CG, Gopinath P, Nair JKKM, Sreedharan H (2018) Prognostic implications of derivative chromosome 9 deletions in patients with advanced-stage chronic myelogenous leukemia. J Environ Pathol Toxicol Oncol 37(2):117–126. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026023

Article  PubMed  Google Scholar 

Ahmadi SE, Rahimi S, Zarandi B et al (2021) MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 202(14):121

Article  Google Scholar 

Melo JV, Barnes DJ (2007) Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7(6):441–453. https://doi.org/10.1038/nrc2147

Article  CAS  PubMed  Google Scholar 

Xie S, Lin H, Sun T, Arlinghaus RB (2002) Jak2 is involved in c-MYC induction by Bcr-Abl. Oncogene 21(47):7137–7146. https://doi.org/10.1038/sj.onc.1205942

Article  CAS  PubMed  Google Scholar 

Afar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL (1994) Differential complementation of Bcr-Abl point mutants with c-MYC. Science 264(5157):424–426. https://doi.org/10.1126/science.8153630

Article  CAS  PubMed  Google Scholar 

Handa H, Hegde UP, Kotelnikov VM, Mundle SD, Dong LM, Burke P, Rose S, Gaskin F, Raza A, Preisler HD (1997) Bcl-2 and c-MYC expression, cell cycle kinetics and apoptosis during the progression of chronic myelogenous leukemia from diagnosis to blastic phase. Leuk Res 21(6):479–489. https://doi.org/10.1016/s0145-2126(97)00006-4

Article  CAS  PubMed  Google Scholar 

Wolman SR, Gundacker H, Appelbaum FR, Slovak ML, Southwest Oncology Group (2002) Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a Southwest oncology group study. Blood 100(1):29–35. https://doi.org/10.1182/blood.v100.1.29

Article  CAS  PubMed  Google Scholar 

Schoch C, Kohlmann A, Dugas M, Kern W, Hiddemann W, Schnittger S, Haferlach T (2005) Genomic gains and losses influence expression levels of genes located within the affected regions: a study on acute myeloid leukemias with trisomy 8, 11, or 13, monosomy 7, or deletion 5q. Leukemia 19(7):1224–1228. https://doi.org/10.1038/sj.leu.2403810

Article  CAS  PubMed  Google Scholar 

Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976–990

Article  CAS  PubMed  Google Scholar 

Quintás-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113(8):1619–1630. https://doi.org/10.1182/blood-2008-03-144790

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathew S, Lorsbach RB, Shearer P, Sandlund JT, Raimondi SC (2000) Double minute chromosomes and c-MYC amplification in a child with secondary myelodysplastic syndrome after treatment for acute lymphoblastic leukemia. Leukemia 14(7):1314–1315. https://doi.org/10.1038/sj.leu.2401782

Article  CAS  PubMed  Google Scholar 

Slovak ML, Ho JP, Pettenati MJ, Khan A, Douer D, Lal S, Traweek ST (1994) Localization of amplified MYC gene sequences to double minute chromosomes in acute myelogenous leukemia. Genes Chromosomes Cancer 9(1):62–67. https://doi.org/10.1002/gcc.2870090111

Article  CAS  PubMed  Google Scholar 

Angelova S, Jordanova M, Spassov B, Shivarov V, Simeonova M, Christov I, Angelova P, Alexandrova K, Stoimenov A, Nikolova V, Dimova I, Ganeva P, Tzvetkov N, Hadj

Comments (0)

No login
gif