Copper Nitroprusside-Based Electrochemical Sensor for Detection of Tryptophan

Mullaliu A, Sougrati M-T, Louvain N, Aquilanti G, Doublet M-L, Stievano L, Giorgetti M. The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials? Electrochim Acta. 2017;257:364–71.

Article  CAS  Google Scholar 

Balmaseda J, Reguera E, Gomez A, Roque J, Vazquez C, Autie M. On the microporous nature of transition metal nitroprussides. J Phys Chem B. 2003;107(41):11360–9.

Article  CAS  Google Scholar 

Gómez A, Rodríguez-Hernández J, Reguera E. Unique coordination in metal nitroprussides: the structure of Cu[Fe(CN)5NO]⋅2H2O and Cu[Fe(CN)5NO]. J Chem Crystallogr. 2004;34:893–903.

Article  Google Scholar 

Mullaliu A, Aquilanti G, Plaisier JR, Giorgetti M. Cross-investigation on copper nitroprusside: combining XRD and XAS for in-depth structural insights. Condensed Matter. 2021;6(3):27.

Article  CAS  Google Scholar 

Carapuça HM, Filipe OM, Simão JE, Fogg AG. Electrochemical studies of nitroprusside in the presence of copper (II): formation of Cu (I) reduced nitroprusside species. J Electroanal Chem. 2000;480(1–2):84–93.

Article  Google Scholar 

Mullaliu A, Stievano L, Aquilanti G, Plaisier JR, Cristol S, Giorgetti M. The peculiar redox mechanism of copper nitroprusside disclosed by a multi-technique approach. Radiat Phys Chem. 2020;175: 108336.

Article  CAS  Google Scholar 

Mullaliu A, Aquilanti G, Stievano L, Conti P, Plaisier JR, Cristol S, Giorgetti M. Beyond the oxygen redox strategy in designing cathode material for batteries: Dynamics of a prussian blue-like cathode revealed by operando X-ray diffraction and X-ray absorption fine structure and by a theoretical approach. J Phys Chem C. 2019;123(14):8588–98.

Article  CAS  Google Scholar 

Reguera L, Balmaseda J, Krap C, Reguera E. Hydrogen storage in porous transition metals nitroprussides. J Phys Chem C. 2008;112(28):10490–501.

Article  CAS  Google Scholar 

Roque-Malherbe R, Lozano C, Polanco R, Marquez F, Lugo F, Hernandez-Maldonado A, Primera-Pedrozo J. Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph. J Solid State Chem. 2011;184(5):1236–44.

Article  CAS  Google Scholar 

Rahut S, Patra SK, Basu JK. Surfactant assisted self assembly of novel ultrathin Cu [Fe (CN)5NO] nanosheets for enhanced electrocatalytic oxygen evolution: effect of nanosheet thickness. Electrochim Acta. 2018;265:202–8.

Article  CAS  Google Scholar 

Carapuca HM, Simao JE, Fogg AG. Electrochemistry of the nitroprusside ion. From mechanistic studies to electrochemical analysis. Analyst. 1996;121(12):1801–4.

Article  CAS  Google Scholar 

Jankhunthod S, Moonla C, Watwiangkham A, Suthirakun S, Siritanon T, Wannapaiboon S, Ngamchuea K. Understanding electrochemical and structural properties of copper hexacyanoferrate: application in hydrogen peroxide analysis. Electrochim Acta. 2021;394: 139147.

Article  CAS  Google Scholar 

Wright AM, Hayton TW. Recent developments in late metal nitrosyl chemistry. Comments Inorg Chem. 2012;33(5–6):207–48.

Article  CAS  Google Scholar 

Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr. 2019;59(1):72–88.

Article  PubMed  Google Scholar 

Comai S, Bertazzo A, Brughera M, Crotti S. Tryptophan in health and disease. Adv Clin Chem. 2020;95:165–218.

Article  CAS  PubMed  Google Scholar 

Liu X-H, Zhai X-Y. Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie. 2021;182:131–9.

Article  CAS  PubMed  Google Scholar 

Widner B, Leblhuber F, Walli J, Tilz G, Demel U, Fuchs D. Tryptophan degradation and immune activation in Alzheimer’s disease. J Neural Transm. 2000;107:343–53.

Article  CAS  PubMed  Google Scholar 

Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K, Guillemin GJ, Brew BJ. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology. 2017;112:373–88.

Article  CAS  PubMed  Google Scholar 

Fernstrom JD. A perspective on the safety of supplemental tryptophan based on its metabolic fates. J Nutr. 2016;146(12):2601S-2608S.

Article  CAS  PubMed  Google Scholar 

Oketch-Rabah HA, Roe AL, Gurley BJ, Griffiths JC, Giancaspro GI. The importance of quality specifications in safety assessments of amino acids: the cases of L-tryptophan and L-citrulline. J Nutr. 2016;146(12):2643S-2651S.

Article  CAS  PubMed  Google Scholar 

Nasimi H, Madsen JS, Zedan AH, Malmendal A, Osther PJS, Alatraktchi FAA. Electrochemical sensors for screening of tyrosine and tryptophan as biomarkers for diseases: a narrative review. Microchem J. 2023;5:108737.

Article  Google Scholar 

Rattanaumpa T, Maensiri S, Ngamchuea K. Microporous carbon in the selective electro-oxidation of molecular biomarkers: uric acid, ascorbic acid, and dopamine. RSC Adv. 2022;12(29):18709–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ngamchuea K, Lin C, Batchelor-McAuley C, Compton RG. Supported microwires for electroanalysis: sensitive amperometric detection of reduced glutathione. Anal Chem. 2017;89(6):3780–6.

Article  CAS  PubMed  Google Scholar 

Ravel B, Newville M. Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat. 2005;12(4):537–41.

Article  CAS  PubMed  Google Scholar 

Jiang G, Wang J, Yang Y, Zhang G, Liu Y, Lin H, Zhang G, Li Y, Fan X. Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule. Biosens Bioelectron. 2016;85:62–7.

Article  CAS  PubMed  Google Scholar 

Asakura D, Okubo M, Zhou H, Amemiya K, Okada K, Glans P-A, Jenkins CA, Arenholz E, Guo J. Anisotropic charge-transfer effects in the asymmetric Fe(CN)5NO octahedron of sodium nitroprusside: a soft X-ray absorption spectroscopy study. Phys Chem Chem Phys. 2014;16(15):7031–6.

Article  PubMed  Google Scholar 

Giorgetti M, Berrettoni M, Filipponi A, Kulesza PJ, Marassi R. Evidence of four-body contributions in the EXAFS spectrum of Na2Co[Fe(CN)6]. Chem Phys Lett. 1997;275(1–2):108–12.

Article  CAS  Google Scholar 

Carapuça HM, Simao JE, Fogg AG. Comproportionation and disproportionation reactions in the electrochemical reduction of nitroprusside at a hanging mercury drop electrode in acidic solution. J Electroanal Chem. 1998;455(1–2):93–105.

Article  Google Scholar 

Moonla C, Jankhunthod S, Ngamchuea K. Copper hexacyanoferrate as a novel electrode material in electrochemical detection of cumene hydroperoxide. J Electrochem Soc. 2021;168(11): 116507.

Article  CAS  Google Scholar 

Kadhim M, Gamaj MI. Estimation of the diffusion coefficient and hydrodynamic radius (stokes radius) for inorganic ions in solution depending on molar conductivity as electro-analytical technique-a review. J Chem Rev. 2020;2(3):182–8.

CAS  Google Scholar 

Cano A, Rodríguez-Hernández J, Shchukarev A, Reguera E. Intercalation of pyrazine in layered copper nitroprusside: synthesis, crystal structure and XPS study. J Solid State Chem. 2019;273:1–10.

Article  CAS  Google Scholar 

Dalirirad S, Steckl AJ. Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal Biochem. 2020;596: 113637.

Article  CAS  PubMed  Google Scholar 

Abellán-Llobregat A, González-Gaitán C, Vidal L, Canals A, Morallon E. Portable electrochemical sensor based on 4-aminobenzoic acid-functionalized herringbone carbon nanotubes for the determination of ascorbic acid and uric acid in human fluids. Biosens Bioelectron. 2018;109:123–31.

Article  PubMed  Google Scholar 

Abellán-Llobregat A, Vidal L, Rodríguez-Amaro R, Berenguer-Murcia Á, Canals A, Morallon E. Au-IDA microelectrodes modified with Au-doped graphene oxide for the simultaneous determination of uric acid and ascorbic acid in urine samples. Electrochim Acta. 2017;227:275–84.

Article  Google Scholar 

Khan MI, Zhang Q, Wang Y, Saud S, Liu W, Liu S, Kong H, Wang C, Uzzaman A, Xiao H. Portable electrophoresis titration chip model for sensing of uric acid in urine and blood by moving reaction boundary. Sens Actuators, B Chem. 2019;286:9–15.

Article  CAS  Google Scholar 

Kałuzna-Czaplinska J, Michalska M, Rynkowski J. Determination of tryptophan in urine of autistic and healthy children by gas chromatography/mass spectrometry. Med Sci Monit. 2010;16(10):488–92.

Google Scholar 

Mao S, Li W, Long Y, Tu Y, Deng A. Sensitive electrochemical sensor of tryptophan based on Ag@ C core–shell nanocomposite modified glassy carbon electrode. Anal Chim Acta. 2012;738:35–40.

Article  CAS  PubMed  Google Scholar 

Xia X, Zheng Z, Zhang Y, Zhao X, Wang C. Synthesis of Ag-MoS2/chitosan nanocomposite and its application for catalytic oxidation of tryptophan. Sens Actuators, B Chem. 2014;192:42–50.

Article  CAS  Google Scholar 

Tığ GA. Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and l-tryptophan based on Ag nanoparticles and poly (l-arginine)-graphene oxide composite. J Electroanal Chem. 2017;807:19–28.

Article  Google Scholar 

Kooshki M, Abdollahi H, Bozorgzadeh S, Haghighi B. Second-order data obtained from differential pulse voltammetry: determination of tryptophan at a gold nanoparticles decorated multiwalled carbon nanotube modified glassy carbon electrode. Electrochim Acta. 2011;56(24):8618–24.

Article  CAS 

留言 (0)

沒有登入
gif