sBioSITe enables sensitive identification of the cell surface proteome through direct enrichment of biotinylated peptides

Tan S, Tan HT, Chung MC. Membrane proteins and membrane proteomics. Proteomics. 2008;8(19):3924–32.

Article  PubMed  CAS  Google Scholar 

Goodwin J, Laslett AL, Rugg-Gunn PJ. The application of cell surface markers to demarcate distinct human pluripotent states. Exp Cell Res. 2020;387(1): 111749.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bausch-Fluck D, Goldmann U, Muller S, van Oostrum M, Muller M, Schubert OT, et al. The in silico human surfaceome. Proc Natl Acad Sci USA. 2018;115(46):E10988–97.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Arispe N, Doh M. Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP (1-40) and (1-42) peptides. FASEB J. 2002;16(12):1526–36.

Article  PubMed  CAS  Google Scholar 

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

Article  PubMed  CAS  Google Scholar 

Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov. 2003;2(1):52–62.

Article  PubMed  CAS  Google Scholar 

Wu CC, Yates JR III. The application of mass spectrometry to membrane proteomics. Nat Biotechnol. 2003;21(3):262–7.

Article  PubMed  CAS  Google Scholar 

Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998;7(4):1029–38.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Josic D, Clifton JG. Mammalian plasma membrane proteomics. Proteomics. 2007;7(16):3010–29.

Article  PubMed  CAS  Google Scholar 

Goshe MB, Blonder J, Smith RD. Affinity labeling of highly hydrophobic integral membrane proteins for proteome-wide analysis. J Proteome Res. 2003;2(2):153–61.

Article  PubMed  CAS  Google Scholar 

Huber LA, Pfaller K, Vietor I. Organelle proteomics: implications for subcellular fractionation in proteomics. Circ Res. 2003;92(9):962–8.

Article  PubMed  CAS  Google Scholar 

Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981;256(4):1604–7.

Article  PubMed  CAS  Google Scholar 

Ghosh D, Krokhin O, Antonovici M, Ens W, Standing KG, Beavis RC, et al. Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res. 2004;3(4):841–50.

Article  PubMed  CAS  Google Scholar 

Elia G. Biotinylation reagents for the study of cell surface proteins. Proteomics. 2008;8(19):4012–24.

Article  PubMed  CAS  Google Scholar 

Ferguson ID, Patino-Escobar B, Tuomivaara ST, Lin YT, Nix MA, Leung KK, et al. The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance. Nat Commun. 2022;13(1):4121.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol. 2009;27(4):378–86.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim DI, Cutler JA, Na CH, Reckel S, Renuse S, Madugundu AK, et al. BioSITe: a method for direct detection and quantitation of site-specific biotinylation. J Proteome Res. 2018;17(2):759–69.

Article  PubMed  CAS  Google Scholar 

Hu Z, Yuan J, Long M, Jiang J, Zhang Y, Zhang T, et al. The cancer surfaceome atlas integrates genomic, functional and drug response data to identify actionable targets. Nat Cancer. 2021;2(12):1406–22.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Governa V, Talbot H, Goncalves de Oliveira K, Cerezo-Magana M, Bang-Rudenstam A, Johansson MC, et al. Landscape of surfaceome and endocytome in human glioma is divergent and depends on cellular spatial organization. Proc Natl Acad Sci USA. 2022;119(9): e2114456119.

Article  PubMed  PubMed Central  CAS  Google Scholar 

UniProt C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–9.

Article  Google Scholar 

Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45(D1):D183–9.

Article  PubMed  CAS  Google Scholar 

Omasits U, Ahrens CH, Muller S, Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30(6):884–6.

Article  PubMed  CAS  Google Scholar 

Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, et al. CD molecules 2006—human cell differentiation molecules. J Immunol Methods. 2007;319(1–2):1–5.

Article  PubMed  CAS  Google Scholar 

Isberg V, Mordalski S, Munk C, Rataj K, Harpsoe K, Hauser AS, et al. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 2016;44(D1):D356–64.

Article  PubMed  CAS  Google Scholar 

Seal RL, Braschi B, Gray K, Jones TEM, Tweedie S, Haim-Vilmovsky L, et al. Genenames.org: the HGNC resources in 2023. Nucleic Acids Res. 2023;51(D1):D1003–9.

Article  PubMed  CAS  Google Scholar 

Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979;17(1):16–23.

PubMed  CAS  Google Scholar 

Xu C, Jung M, Burkhardt M, Stephan C, Schnorr D, Loening S, et al. Increased CD59 protein expression predicts a PSA relapse in patients after radical prostatectomy. Prostate. 2005;62(3):224–32.

Article  PubMed  CAS  Google Scholar 

Hansen AG, Arnold SA, Jiang M, Palmer TD, Ketova T, Merkel A, et al. ALCAM/CD166 is a TGF-beta-responsive marker and functional regulator of prostate cancer metastasis to bone. Cancer Res. 2014;74(5):1404–15.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nastaly P, Stoupiec S, Popeda M, Smentoch J, Schlomm T, Morrissey C, et al. EGFR as a stable marker of prostate cancer dissemination to bones. Br J Cancer. 2020;123(12):1767–74.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang P, Chen L, Zhou F, He Z, Wang G, Luo Y. NRP1 promotes prostate cancer progression via modulating EGFR-dependent AKT pathway activation. Cell Death Dis. 2023;14(2):159.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tse BWC, Volpert M, Ratther E, Stylianou N, Nouri M, McGowan K, et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene. 2017;36(24):3417–27.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Glinka Y, Stoilova S, Mohammed N, Prud’homme GJ. Neuropilin-1 exerts co-receptor function for TGF-beta-1 on the membrane of cancer cells and enhances responses to both latent and active TGF-beta. Carcinogenesis. 2011;32(4):613–21.

Article  PubMed  CAS  Google Scholar 

Maimaiti M, Sakamoto S, Sugiura M, Kanesaka M, Fujimoto A, Matsusaka K, et al. The heavy chain of 4F2 antigen promote prostate cancer progression via SKP-2. Sci Rep. 2021;11(1):11478.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kurose H, Ueda K, Kondo R, Ogasawara S, Kusano H, Sanada S, et al. Elevated expression of EPHA2 is associated with poor prognosis after radical prostatectomy in prostate cancer. Anticancer Res. 2019;39(11):6249–57.

Article  PubMed  CAS  Google Scholar 

Kuvibidila S, Gauthier T, Warrier RP, Rayford W. Increased levels of serum transferrin receptor and serum transferrin receptor/log ferritin ratios in men with prostate cancer and the implications for body-iron stores. J Lab Clin Med. 2004;144(4):176–82.

Article  PubMed 

留言 (0)

沒有登入
gif