miR-21 Expressed by Dermal Fibroblasts Enhances Skin Wound Healing Through the Regulation of Inflammatory Cytokine Expression

Sorg, H., et al. 2018. Panta Rhei: neovascularization, angiogenesis and nutritive perfusion in wound healing. European Surgical Research 59 (3–4): 232–241.

Article  PubMed  Google Scholar 

Wojtowicz, A.M., et al. 2014. The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair and Regeneration 22 (2): 246–255.

Article  PubMed  PubMed Central  Google Scholar 

Werner, S., T. Krieg, and H. Smola. 2007. Keratinocyte-fibroblast interactions in wound healing. The Journal of Investigative Dermatology 127 (5): 998–1008.

Article  CAS  PubMed  Google Scholar 

Li, B., and J.H. Wang. 2011. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. Journal of Tissue Viability 20 (4): 108–120.

Article  PubMed  Google Scholar 

Stunova, A., and L. Vistejnova. 2018. Dermal fibroblasts-a heterogeneous population with regulatory function in wound healing. Cytokine & Growth Factor Reviews 39: 137–150.

Article  CAS  Google Scholar 

Tracy, L.E., R.A. Minasian, and E.J. Caterson. 2016. Extracellular matrix and dermal fibroblast function in the healing wound. Advances in Wound Care 5 (3): 119–136.

Article  PubMed  PubMed Central  Google Scholar 

Darby, I.A., et al. 2014. Fibroblasts and myofibroblasts in wound healing. Clinical, Cosmetic and Investigational Dermatology 7: 301–311.

PubMed  PubMed Central  Google Scholar 

Cooper, P.O., et al. 2021. Dermal drivers of injury-induced inflammation: contribution of adipocytes and fibroblasts. International Journal of Molecular Sciences 22 (4): 1933.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werner, S., and R. Grose. 2003. Regulation of wound healing by growth factors and cytokines. Physiological Reviews 83 (3): 835–870.

Article  CAS  PubMed  Google Scholar 

Bainbridge, P. 2013. Wound healing and the role of fibroblasts. Journal of Wound Care 22 (8): 407–408, 410–412.

Article  CAS  PubMed  Google Scholar 

Bibby, G., et al. 2022. Capturing the RNA castle: exploiting microRNA inhibition for wound healing. FEBS Journal 289 (17): 5137–5151.

Article  CAS  PubMed  Google Scholar 

Varikuti, S., et al. 2021. MicroRNA-21 deficiency promotes the early Th1 immune response and resistance toward visceral leishmaniasis. The Journal of Immunology 207 (5): 1322–1332.

Article  CAS  PubMed  Google Scholar 

Kumarswamy, R., et al. 2012. Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arteriosclerosis, Thrombosis, and Vascular Biology 32 (2): 361–369.

Article  CAS  PubMed  Google Scholar 

Xie, J., et al. 2022. Roles of microRNA-21 in skin wound healing: a comprehensive review. Frontiers in Pharmacology 13: 828627.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumarswamy, R., I. Volkmann, and T. Thum. 2011. Regulation and function of miRNA-21 in health and disease. RNA Biology 8 (5): 706–713.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, Y.H., and C.J. Tsao. 2016. Emerging role of microRNA-21 in cancer. Biomedical Reports 5 (4): 395–402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melnik, B.C. 2015. MiR-21: an environmental driver of malignant melanoma? Journal of Translational Medicine 13: 202.

Article  PubMed  PubMed Central  Google Scholar 

Zhou, M., et al. 2019. Overexpression of microRNA-21 inhibits the growth and metastasis of melanoma cells by targeting MKK3. Molecular Medicine Reports 20 (2): 1797–1807.

CAS  PubMed  PubMed Central  Google Scholar 

Long, S., et al. 2018. MiR-21 ameliorates age-associated skin wound healing defects in mice. The Journal of Gene Medicine 20 (6): e3022.

Article  PubMed  Google Scholar 

Li, Q., et al. 2019. Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis. International Journal of Biochemistry & Cell Biology 114: 105570.

Article  CAS  Google Scholar 

Lv, Q., et al. 2020. Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing. Molecular Pharmaceutics 17 (5): 1723–1733.

Article  CAS  PubMed  Google Scholar 

Yang, C., et al. 2020. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Archives of Biochemistry and Biophysics 681: 108259.

Article  CAS  PubMed  Google Scholar 

Wang, J., et al. 2021. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. Journal of Nanobiotechnology 19 (1): 202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, S.C., et al. 2021. Adipose-derived stem cell induced-tissue repair or wound healing is mediated by the concomitant upregulation of miR-21 and miR-29b expression and activation of the AKT signaling pathway. Archives of Biochemistry and Biophysics 705: 108895.

Article  CAS  PubMed  Google Scholar 

Ma, X., et al. 2011. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proceedings of the National Academy of Sciences 108 (25): 10144–10149.

Article  CAS  Google Scholar 

Zhang, Q., et al. 2020. Early-stage bilayer tissue-engineered skin substitute formed by adult skin progenitor cells produces an improved skin structure in vivo. Stem Cell Research & Therapy 11 (1): 407.

Article  Google Scholar 

Wen, J., et al. 2018. Y-27632 simplifies the isolation procedure of human primary epidermal cells by selectively blocking focal adhesion of dermal cells. Journal of Tissue Engineering and Regenerative Medicine 12 (2): e1251–e1255.

Article  CAS  PubMed  Google Scholar 

Liu, P., et al. 2022. Exosomes derived from hypoxia-conditioned stem cells of human deciduous exfoliated teeth enhance angiogenesis via the transfer of let-7f-5p and miR-210-3p. Frontiers in Cell and Developmental Biology 10: 879877.

Article  PubMed  PubMed Central  Google Scholar 

Zhuang, D., et al. 2022. Phenformin suppresses angiogenesis through the regulation of exosomal microRNA-1246 and microRNA-205 levels derived from oral squamous cell carcinoma cells. Frontiers in Oncology 12: 943477.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X.J., et al. 2017. Exosomal microRNA MiR-1246 promotes cell proliferation, invasion and drug resistance by targeting CCNG2 in breast cancer. Cellular Physiology and Biochemistry 44 (5): 1741–1748.

Article  CAS  PubMed  Google Scholar 

Galiano, R.D., et al. 2004. Quantitative and reproducible murine model of excisional wound healing. Wound Repair and Regeneration 12 (4): 485–492.

Article  PubMed  Google Scholar 

Lee, J.G., and M. Heur. 2013. Interleukin-1beta enhances cell migration through AP-1 and NF-kappaB pathway-dependent FGF2 expression in human corneal endothelial cells. Biology of the Cell 105 (4): 175–189.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tottoli, E.M., et al. 2020. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12 (8): 735.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Velnar, T., T. Bailey, and V. Smrkolj. 2009. The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research 37 (5): 1528–1542.

Article  CAS  PubMed  Google Scholar 

Sheedy, F.J. 2015. Turning 21: induction of miR-21 as a key switch in the inflammatory response. Frontiers in Immunology 6: 19.

Article  PubMed  PubMed Central  Google Scholar 

Sonkoly, E., et al. 2007. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS ONE 2 (7): e610.

Article  PubMed  PubMed Central  Google Scholar 

Chen, Y., et al. 2013. HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathogens 9 (4): e1003248.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, Z., et al. 2012. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Letters 586 (16): 2459–2467.

留言 (0)

沒有登入
gif