Penn, DJ, and Frommen, JG. Kin recognition: an overview of conceptual issues, mechanisms and evolutionary theory. In: Animal behaviour: evolution and mechanisms; 2010. p. 55–85. https://doi.org/10.1007/978-3-642-02624-9_3
Bielsky IF, Young LJ. Oxytocin, vasopressin, and social recognition in mammals. Peptides. 2004;25:1565–74. https://doi.org/10.1016/j.peptides.2004.05.019
Article CAS PubMed Google Scholar
Ferguson JN, Young LJ, Insel TR. The neuroendocrine basis of social recognition. Front Neuroendocrinol. 2002;23:200–24. https://doi.org/10.1006/frne.2002.0229
Article CAS PubMed Google Scholar
Insel TR, Fernald RD. How the brain processes social information: Searching for the social brain. Annu Rev Neurosci. 2004;27:697–722. https://doi.org/10.1146/annurev.neuro.27.070203.144148
Article CAS PubMed Google Scholar
Hoertnagl CM, Hofer A. Social cognition in serious mental illness. Curr Opin Psychiatry. 2014;27:197–202. https://doi.org/10.1097/YCO.0000000000000055
Oliver LD, Moxon-Emre I, Lai MC, Grennan L, Voineskos AN, Ameis SH. Social cognitive performance in schizophrenia spectrum disorders compared with autism spectrum disorder: a systematic review, meta-analysis, and meta-regression. JAMA Psychiatry. 2021;78:281–92. https://doi.org/10.1001/jamapsychiatry.2020.3908
Velikonja T, Fett AK, Velthorst E. Patterns of nonsocial and social cognitive functioning in adults with autism spectrum disorder: a systematic review and meta-analysis. JAMA Psychiatry. 2019;76:135–51. https://doi.org/10.1001/jamapsychiatry.2018.3645
Article PubMed PubMed Central Google Scholar
Popik P, Vetulani J, van Ree JM. Low doses of oxytocin facilitate social recognition in rats. Psychopharmacol. 1992;106:71–74. https://doi.org/10.1007/BF02253591
Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, et al. Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA. 2005;102:16096–101. https://doi.org/10.1073/pnas.0505312102
Article CAS PubMed PubMed Central Google Scholar
Ferguson JN, Young LJ, Hearn EF, Matzuk MM, Insel TR, Winslow JT. Social amnesia in mice lacking the oxytocin gene. Nat Genet. 2000;25:284–8. https://doi.org/10.1038/77040
Article CAS PubMed Google Scholar
Augustine RA, Seymour AJ, Campbell RE, Grattan DR, Brown CH. Integrative neuro-humoral regulation of oxytocin neuron activity in pregnancy and lactation. J Neuroendocrinol. 2018. https://doi.org/10.1111/jne.12569
Grinevich V, Neumann ID. Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry. 2021;26:265–79. https://doi.org/10.1038/s41380-020-0802-9
Article CAS PubMed Google Scholar
Wang X, Zhan Y. Regulation of social recognition memory in the hippocampal circuits. Front Neural Circuits. 2022;16:839931. https://doi.org/10.3389/fncir.2022.839931
Article CAS PubMed PubMed Central Google Scholar
Gur R, Tendler A, Wagner S. Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala. Biol Psychiatry. 2014;76:377–86. https://doi.org/10.1016/j.biopsych.2014.03.022
Article CAS PubMed Google Scholar
Ferguson JN, Aldag JM, Insel TR, Young LJ. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci. 2001;21:8278–85.
Article CAS PubMed PubMed Central Google Scholar
Tanimizu T, Kenney JW, Okano E, Kadoma K, Frankland PW, Kida S. Functional connectivity of multiple brain regions required for the consolidation of social recognition memory. J Neurosci. 2017;37:4103–16. https://doi.org/10.1523/JNEUROSCI.3451-16.2017
Article CAS PubMed PubMed Central Google Scholar
Cumbers MR, Chung ST, Wakerley JB. A neuromodulatory role for oxytocin within the supramammillary nucleus. Neuropeptides. 2007;41:217–26. https://doi.org/10.1016/j.npep.2007.04.004
Article CAS PubMed Google Scholar
Gould BR, Zingg HH. Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reporter mouse. Neuroscience. 2003;122:155–67. https://doi.org/10.1016/s0306-4522(03)00283-5
Article CAS PubMed Google Scholar
Kremarik P, Freund-Mercier MJ, Stoeckel ME. Oxytocin and vasopressin binding sites in the hypothalamus of the rat: histoautoradiographic detection. Brain Res Bull. 1995;36:195–203. https://doi.org/10.1016/0361-9230(94)00196-8
Article CAS PubMed Google Scholar
Yoshimura R, Kiyama H, Kimura T, Araki T, Maeno H, Tanizawa O, et al. Localization of oxytocin receptor messenger ribonucleic acid in the rat brain. Endocrinology. 1993;133:1239–46. https://doi.org/10.1210/endo.133.3.8396014
Article CAS PubMed Google Scholar
Swanson LW. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull. 1982;9:321–53. https://doi.org/10.1016/0361-9230(82)90145-9
Article CAS PubMed Google Scholar
Kirk IJ. Frequency modulation of hippocampal theta by the supramammillary nucleus, and other hypothalamo-hippocampal interactions: mechanisms and functional implications. Neurosci Biobehav Rev. 1998;22:291–302. https://doi.org/10.1016/s0149-7634(97)00015-8
Article CAS PubMed Google Scholar
Pan WX, McNaughton N. The supramammillary area: its organization, functions and relationship to the hippocampus. Prog Neurobiol. 2004;74:127–66. https://doi.org/10.1016/j.pneurobio.2004.09.003
Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, et al. Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun. 2017;8:1405. https://doi.org/10.1038/s41467-017-01004-6
Article CAS PubMed PubMed Central Google Scholar
Renouard L, Billwiller F, Ogawa K, Clement O, Camargo N, Abdelkarim M, et al. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci Adv. 2015;1:e1400177. https://doi.org/10.1126/sciadv.1400177
Article CAS PubMed PubMed Central Google Scholar
Ikemoto S. The supramammillary nucleus mediates primary reinforcement via GABA(A) receptors. Neuropsychopharmacology. 2005;30:1088–95. https://doi.org/10.1038/sj.npp.1300660
Article CAS PubMed Google Scholar
Ikemoto S, Witkin BM, Zangen A, Wise RA. Rewarding effects of AMPA administration into the supramammillary or posterior hypothalamic nuclei but not the ventral tegmental area. J Neurosci. 2004;24:5758–65. https://doi.org/10.1523/JNEUROSCI.5367-04.2004
Article CAS PubMed PubMed Central Google Scholar
Ikemoto S, Qin M, Liu ZH. Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J Neurosci. 2006;26:723–30. https://doi.org/10.1523/JNEUROSCI.4542-05.2006
Article CAS PubMed PubMed Central Google Scholar
Shin R, Ikemoto S. Administration of the GABAA receptor antagonist picrotoxin into rat supramammillary nucleus induces c-Fos in reward-related brain structures. Supramammillary picrotoxin and c-Fos expression. BMC Neurosci. 2010;11:101. https://doi.org/10.1186/1471-2202-11-101
Article CAS PubMed PubMed Central Google Scholar
Kesner, Shin AJ, Calva R, Don CB, Junn RF, Potter S, et al. Supramammillary neurons projecting to the septum regulate dopamine and motivation for environmental interaction in mice. Nat Commun. 2021;12:2811. https://doi.org/10.1038/s41467-021-23040-z
Article CAS PubMed PubMed Central Google Scholar
Chen, He S, Huang L, Boehringer AJY, Robert R, Wintzer V, et al. A hypothalamic novelty signal modulates hippocampal memory. Nature. 2020;586:270–4. https://doi.org/10.1038/s41586-020-2771-1
Article CAS PubMed Google Scholar
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. https://doi.org/10.3758/bf03193146
Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M, Tang Y, et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron. 2016;89:1291–304. https://doi.org/10.1016/j.neuron.2016.01.041
Comments (0)