Oxytocin activity in the paraventricular and supramammillary nuclei of the hypothalamus is essential for social recognition memory in rats

Penn, DJ, and Frommen, JG. Kin recognition: an overview of conceptual issues, mechanisms and evolutionary theory. In: Animal behaviour: evolution and mechanisms; 2010. p. 55–85. https://doi.org/10.1007/978-3-642-02624-9_3

Bielsky IF, Young LJ. Oxytocin, vasopressin, and social recognition in mammals. Peptides. 2004;25:1565–74. https://doi.org/10.1016/j.peptides.2004.05.019

Article  CAS  PubMed  Google Scholar 

Ferguson JN, Young LJ, Insel TR. The neuroendocrine basis of social recognition. Front Neuroendocrinol. 2002;23:200–24. https://doi.org/10.1006/frne.2002.0229

Article  CAS  PubMed  Google Scholar 

Insel TR, Fernald RD. How the brain processes social information: Searching for the social brain. Annu Rev Neurosci. 2004;27:697–722. https://doi.org/10.1146/annurev.neuro.27.070203.144148

Article  CAS  PubMed  Google Scholar 

Hoertnagl CM, Hofer A. Social cognition in serious mental illness. Curr Opin Psychiatry. 2014;27:197–202. https://doi.org/10.1097/YCO.0000000000000055

Article  PubMed  Google Scholar 

Oliver LD, Moxon-Emre I, Lai MC, Grennan L, Voineskos AN, Ameis SH. Social cognitive performance in schizophrenia spectrum disorders compared with autism spectrum disorder: a systematic review, meta-analysis, and meta-regression. JAMA Psychiatry. 2021;78:281–92. https://doi.org/10.1001/jamapsychiatry.2020.3908

Article  PubMed  Google Scholar 

Velikonja T, Fett AK, Velthorst E. Patterns of nonsocial and social cognitive functioning in adults with autism spectrum disorder: a systematic review and meta-analysis. JAMA Psychiatry. 2019;76:135–51. https://doi.org/10.1001/jamapsychiatry.2018.3645

Article  PubMed  PubMed Central  Google Scholar 

Popik P, Vetulani J, van Ree JM. Low doses of oxytocin facilitate social recognition in rats. Psychopharmacol. 1992;106:71–74. https://doi.org/10.1007/BF02253591

Article  CAS  Google Scholar 

Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, et al. Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA. 2005;102:16096–101. https://doi.org/10.1073/pnas.0505312102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferguson JN, Young LJ, Hearn EF, Matzuk MM, Insel TR, Winslow JT. Social amnesia in mice lacking the oxytocin gene. Nat Genet. 2000;25:284–8. https://doi.org/10.1038/77040

Article  CAS  PubMed  Google Scholar 

Augustine RA, Seymour AJ, Campbell RE, Grattan DR, Brown CH. Integrative neuro-humoral regulation of oxytocin neuron activity in pregnancy and lactation. J Neuroendocrinol. 2018. https://doi.org/10.1111/jne.12569

Article  PubMed  Google Scholar 

Grinevich V, Neumann ID. Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry. 2021;26:265–79. https://doi.org/10.1038/s41380-020-0802-9

Article  CAS  PubMed  Google Scholar 

Wang X, Zhan Y. Regulation of social recognition memory in the hippocampal circuits. Front Neural Circuits. 2022;16:839931. https://doi.org/10.3389/fncir.2022.839931

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gur R, Tendler A, Wagner S. Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala. Biol Psychiatry. 2014;76:377–86. https://doi.org/10.1016/j.biopsych.2014.03.022

Article  CAS  PubMed  Google Scholar 

Ferguson JN, Aldag JM, Insel TR, Young LJ. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci. 2001;21:8278–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanimizu T, Kenney JW, Okano E, Kadoma K, Frankland PW, Kida S. Functional connectivity of multiple brain regions required for the consolidation of social recognition memory. J Neurosci. 2017;37:4103–16. https://doi.org/10.1523/JNEUROSCI.3451-16.2017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cumbers MR, Chung ST, Wakerley JB. A neuromodulatory role for oxytocin within the supramammillary nucleus. Neuropeptides. 2007;41:217–26. https://doi.org/10.1016/j.npep.2007.04.004

Article  CAS  PubMed  Google Scholar 

Gould BR, Zingg HH. Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reporter mouse. Neuroscience. 2003;122:155–67. https://doi.org/10.1016/s0306-4522(03)00283-5

Article  CAS  PubMed  Google Scholar 

Kremarik P, Freund-Mercier MJ, Stoeckel ME. Oxytocin and vasopressin binding sites in the hypothalamus of the rat: histoautoradiographic detection. Brain Res Bull. 1995;36:195–203. https://doi.org/10.1016/0361-9230(94)00196-8

Article  CAS  PubMed  Google Scholar 

Yoshimura R, Kiyama H, Kimura T, Araki T, Maeno H, Tanizawa O, et al. Localization of oxytocin receptor messenger ribonucleic acid in the rat brain. Endocrinology. 1993;133:1239–46. https://doi.org/10.1210/endo.133.3.8396014

Article  CAS  PubMed  Google Scholar 

Swanson LW. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull. 1982;9:321–53. https://doi.org/10.1016/0361-9230(82)90145-9

Article  CAS  PubMed  Google Scholar 

Kirk IJ. Frequency modulation of hippocampal theta by the supramammillary nucleus, and other hypothalamo-hippocampal interactions: mechanisms and functional implications. Neurosci Biobehav Rev. 1998;22:291–302. https://doi.org/10.1016/s0149-7634(97)00015-8

Article  CAS  PubMed  Google Scholar 

Pan WX, McNaughton N. The supramammillary area: its organization, functions and relationship to the hippocampus. Prog Neurobiol. 2004;74:127–66. https://doi.org/10.1016/j.pneurobio.2004.09.003

Article  PubMed  Google Scholar 

Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, et al. Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun. 2017;8:1405. https://doi.org/10.1038/s41467-017-01004-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Renouard L, Billwiller F, Ogawa K, Clement O, Camargo N, Abdelkarim M, et al. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci Adv. 2015;1:e1400177. https://doi.org/10.1126/sciadv.1400177

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikemoto S. The supramammillary nucleus mediates primary reinforcement via GABA(A) receptors. Neuropsychopharmacology. 2005;30:1088–95. https://doi.org/10.1038/sj.npp.1300660

Article  CAS  PubMed  Google Scholar 

Ikemoto S, Witkin BM, Zangen A, Wise RA. Rewarding effects of AMPA administration into the supramammillary or posterior hypothalamic nuclei but not the ventral tegmental area. J Neurosci. 2004;24:5758–65. https://doi.org/10.1523/JNEUROSCI.5367-04.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikemoto S, Qin M, Liu ZH. Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J Neurosci. 2006;26:723–30. https://doi.org/10.1523/JNEUROSCI.4542-05.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin R, Ikemoto S. Administration of the GABAA receptor antagonist picrotoxin into rat supramammillary nucleus induces c-Fos in reward-related brain structures. Supramammillary picrotoxin and c-Fos expression. BMC Neurosci. 2010;11:101. https://doi.org/10.1186/1471-2202-11-101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kesner, Shin AJ, Calva R, Don CB, Junn RF, Potter S, et al. Supramammillary neurons projecting to the septum regulate dopamine and motivation for environmental interaction in mice. Nat Commun. 2021;12:2811. https://doi.org/10.1038/s41467-021-23040-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, He S, Huang L, Boehringer AJY, Robert R, Wintzer V, et al. A hypothalamic novelty signal modulates hippocampal memory. Nature. 2020;586:270–4. https://doi.org/10.1038/s41586-020-2771-1

Article  CAS  PubMed  Google Scholar 

Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. https://doi.org/10.3758/bf03193146

Article  PubMed  Google Scholar 

Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M, Tang Y, et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron. 2016;89:1291–304. https://doi.org/10.1016/j.neuron.2016.01.041

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif