Role of advanced glycation end products in diabetic vascular injury: molecular mechanisms and therapeutic perspectives

Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013. 36(Suppl 1): S67–74.

Shah AD, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015;3(2):105–13.

Article  PubMed  PubMed Central  Google Scholar 

Singh R, et al. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–46.

Article  CAS  PubMed  Google Scholar 

Goldin A, et al. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597–605.

Article  CAS  PubMed  Google Scholar 

Goh SY, Cooper ME. Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab. 2008;93(4):1143–52.

Article  CAS  PubMed  Google Scholar 

Basta G. Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis. 2008;196(1):9–21.

Article  CAS  PubMed  Google Scholar 

Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des. 2005;11(18):2279–99.

Article  CAS  PubMed  Google Scholar 

Perrone A, et al. Advanced glycation end products (AGEs): biochemistry, signaling, analytical methods, and epigenetic effects. Oxid Med Cell Longev. 2020;2020:3818196.

Article  PubMed  PubMed Central  Google Scholar 

Thornalley PJ. Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol. 2002;50:37–57.

Article  CAS  PubMed  Google Scholar 

Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34.

Article  CAS  PubMed  Google Scholar 

Ahmed N. Advanced glycation endproducts–role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67(1):3–21.

Article  CAS  PubMed  Google Scholar 

Rabbani N, Xue M, Thornalley PJ. Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci (Lond). 2016;130(19):1677–96.

Article  CAS  PubMed  Google Scholar 

Vistoli G, et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res. 2013;47(Suppl 1):3–27.

Article  CAS  PubMed  Google Scholar 

Uribarri J, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911-16.e12.

Article  PubMed  PubMed Central  Google Scholar 

Takeuchi M, et al. Involvement of advanced glycation end-products (AGEs) in Alzheimer’s disease. Curr Alzheimer Res. 2004;1(1):39–46.

Article  CAS  PubMed  Google Scholar 

Gugliucci A, Menini T. The axis AGE-RAGE-soluble RAGE and oxidative stress in chronic kidney disease. Adv Exp Med Biol. 2014;824:191–208.

Article  CAS  PubMed  Google Scholar 

Baynes JW. The role of AGEs in aging: causation or correlation. Exp Gerontol. 2001;36(9):1527–37.

Article  CAS  PubMed  Google Scholar 

Ramasamy R, et al. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15(7):16r–28r.

Article  CAS  PubMed  Google Scholar 

Basta G, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002;105(7):816–22.

Article  CAS  PubMed  Google Scholar 

Xue J, et al. Advanced glycation end product recognition by the receptor for AGEs. Structure. 2011;19(5):722–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohgami N, et al. CD36, a member of class B scavenger receptor family, is a receptor for advanced glycation end products. Ann N Y Acad Sci. 2001;947:350–5.

Article  CAS  PubMed  Google Scholar 

Vlassara H, et al. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med. 1995;1(6):634–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ott C, et al. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nosadini R, Tonolo G. Role of oxidized low density lipoproteins and free fatty acids in the pathogenesis of glomerulopathy and tubulointerstitial lesions in type 2 diabetes. Nutr Metab Cardiovasc Dis. 2011;21(2):79–85.

Article  CAS  PubMed  Google Scholar 

Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88.

Article  CAS  PubMed  Google Scholar 

Rohm TV, et al. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55(1):31–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

Article  CAS  PubMed  Google Scholar 

Nieuwdorp M, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006;55(4):1127–32.

Article  CAS  PubMed  Google Scholar 

Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 2017;9(5):434–49.

Article  CAS  PubMed  Google Scholar 

Yuan G, et al. Advanced glycation end products induce proliferation and migration of human aortic smooth muscle cells through PI3K/AKT pathway. Biomed Res Int. 2020;2020:8607418.

Article  PubMed  PubMed Central  Google Scholar 

Kitada M, et al. Molecular mechanisms of diabetic vascular complications. J Diabetes Investig. 2010;1(3):77–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monnier VM, et al. Glucosepane: a poorly understood advanced glycation end product of growing importance for diabetes and its complications. Clin Chem Lab Med. 2014;52(1):21–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamagishi SI, Matsui T. Role of ligands of receptor for advanced glycation end products (RAGE) in peripheral artery disease. Rejuvenation Res. 2018;21(5):456–63.

Article  CAS  PubMed  Google Scholar 

Forbes JM, et al. Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol. 2003;14(8 Suppl 3):S254–8.

Article  CAS  PubMed  Google Scholar 

Wendt TM, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol. 2003;162(4):1123–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bucala R, et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1(1):71–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barile GR, et al. The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2005;46(8):2916–24.

Article  PubMed  Google Scholar 

Huang JS, et al. Cinnamaldehyde and nitric oxide attenuate advanced glycation end products-induced the Jak/STAT signaling in human renal tubular cells. J Cell Biochem. 2015;116(6):1028–38.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif