Glioma-derived ANXA1 suppresses the immune response to TLR3 ligands by promoting an anti-inflammatory tumor microenvironment

Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro Oncol. 2022;24:v1–v95. https://doi.org/10.1093/neuonc/noac202.

Article  PubMed  PubMed Central  Google Scholar 

Tan AC, Ashley DM, Lopez GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 2020;70:299–312. https://doi.org/10.3322/caac.21613.

Article  PubMed  Google Scholar 

Wefel JS, Noll KR, Scheurer ME. Neurocognitive functioning and genetic variation in patients with primary brain tumours. Lancet Oncol. 2016;17:e97–e108. https://doi.org/10.1016/S1470-2045(15)00380-0.

Article  PubMed  PubMed Central  Google Scholar 

Weyer-Jamora C, Brie MS, Luks TL, Smith EM, Hervey-Jumper SL, Taylor JW. Postacute cognitive rehabilitation for adult brain tumor patients. Neurosurgery. 2021;89:945–53. https://doi.org/10.1093/neuros/nyaa552.

Article  PubMed  PubMed Central  Google Scholar 

Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20:1100–9. https://doi.org/10.1038/s41590-019-0433-y.

Article  PubMed  Google Scholar 

Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20:26–41. https://doi.org/10.1038/s41568-019-0205-x.

Article  PubMed  Google Scholar 

Patel MA, Pardoll DM. Concepts of immunotherapy for glioma. J Neurooncol. 2015;123:323–30. https://doi.org/10.1007/s11060-015-1810-5.

Article  PubMed  PubMed Central  Google Scholar 

Watowich, MB, Gilbert, MR, and Larion, M. T cell exhaustion in malignant gliomas. Trends Cancer. https://doi.org/10.1016/j.trecan.2022.12.008. (2023).

Kreatsoulas D, Bolyard C, Wu BX, Cam H, Giglio P, Li Z. Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. J Hematol Oncol. 2022;15:80 https://doi.org/10.1186/s13045-022-01298-0.

Article  PubMed  PubMed Central  Google Scholar 

Jiang H, Yu K, Cui Y, Ren X, Li M, Yang C, et al. Combination of immunotherapy and radiotherapy for recurrent malignant gliomas: Results From a prospective study. Front Immunol. 2021;12:632547 https://doi.org/10.3389/fimmu.2021.632547.

Article  PubMed  PubMed Central  Google Scholar 

Deng S, Zhu S, Qiao Y, Liu YJ, Chen W, Zhao G, et al. Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma. Protein Cell. 2014;5:899–911. https://doi.org/10.1007/s13238-014-0112-6.

Article  PubMed  PubMed Central  Google Scholar 

De Waele J, Marcq E, Van Audenaerde JR, Van Loenhout J, Deben C, Zwaenepoel K, et al. Poly(I:C) primes primary human glioblastoma cells for an immune response invigorated by PD-L1 blockade. Oncoimmunology. 2018;7:e1407899 https://doi.org/10.1080/2162402X.2017.1407899.

Article  PubMed  Google Scholar 

Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S, et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016;44:924–38. https://doi.org/10.1016/j.immuni.2016.03.012.

Article  PubMed  PubMed Central  Google Scholar 

Kees T, Lohr J, Noack J, Mora R, Gdynia G, Todt G, et al. Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neuro Oncol. 2012;14:64–78. https://doi.org/10.1093/neuonc/nor182.

Article  PubMed  Google Scholar 

Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci USA. 2012;109:2066–71. https://doi.org/10.1073/pnas.1113099109.

Article  PubMed  PubMed Central  Google Scholar 

Wertel I, Surowka J, Polak G, Barczynski B, Bednarek W, Jakubowicz-Gil J, et al. Macrophage-derived chemokine CCL22 and regulatory T cells in ovarian cancer patients. Tumour Biol. 2015;36:4811–7. https://doi.org/10.1007/s13277-015-3133-8.

Article  PubMed  Google Scholar 

Rameshbabu, S, Labadie, BW, Argulian, A, and Patnaik, A. Targeting innate immunity in cancer therapy. Vaccines (Basel) 9. https://doi.org/10.3390/vaccines9020138. (2021).

Foo SL, Yap G, Cui J, Lim LHK. Annexin-A1 - A blessing or a curse in cancer? Trends Mol Med. 2019;25:315–27. https://doi.org/10.1016/j.molmed.2019.02.004.

Article  PubMed  Google Scholar 

Garcia Pedrero JM, Fernandez MP, Morgan RO, Herrero Zapatero A, Gonzalez MV, Suarez Nieto C, et al. Annexin A1 down-regulation in head and neck cancer is associated with epithelial differentiation status. Am J Pathol. 2004;164:73–9. https://doi.org/10.1016/S0002-9440(10)63098-2.

Article  PubMed  Google Scholar 

Rodrigo JP, Garcia-Pedrero JM, Fernandez MP, Morgan RO, Suarez C, Herrero A. Annexin A1 expression in nasopharyngeal carcinoma correlates with squamous differentiation. Am J Rhinol. 2005;19:483–7.

Article  PubMed  Google Scholar 

Lin Y, Lin G, Fang W, Zhu H, Chu K. Increased expression of annexin A1 predicts poor prognosis in human hepatocellular carcinoma and enhances cell malignant phenotype. Med Oncol. 2014;31:327. https://doi.org/10.1007/s12032-014-0327-7.

Article  PubMed  Google Scholar 

Bai XF, Ni XG, Zhao P, Liu SM, Wang HX, Guo B, et al. Overexpression of annexin 1 in pancreatic cancer and its clinical significance. World J Gastroenterol. 2004;10:1466–70. https://doi.org/10.3748/wjg.v10.i10.1466.

Article  PubMed  PubMed Central  Google Scholar 

Cheng TY, Wu MS, Lin JT, Lin MT, Shun CT, Huang HY, et al. Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway. Cancer. 2012;118:5757–67. https://doi.org/10.1002/cncr.27565.

Article  PubMed  Google Scholar 

Schittenhelm J, Trautmann K, Tabatabai G, Hermann C, Meyermann R, Beschorner R. Comparative analysis of annexin-1 in neuroepithelial tumors shows altered expression with the grade of malignancy but is not associated with survival. Mod Pathol. 2009;22:1600–11. https://doi.org/10.1038/modpathol.2009.132.

Article  PubMed  Google Scholar 

Yang Y, Liu Y, Yao X, Ping Y, Jiang T, Liu Q, et al. Annexin 1 released by necrotic human glioblastoma cells stimulates tumor cell growth through the formyl peptide receptor 1. Am J Pathol. 2011;179:1504–12. https://doi.org/10.1016/j.ajpath.2011.05.059.

Article  PubMed  PubMed Central  Google Scholar 

Cheng SX, Tu Y, Zhang S. FoxM1 promotes glioma cells progression by up-regulating Anxa1 expression. PLoS One. 2013;8:e72376. https://doi.org/10.1371/journal.pone.0072376.

Article  PubMed  PubMed Central  Google Scholar 

Gavins FN, Hickey MJ. Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol. 2012;3:354. https://doi.org/10.3389/fimmu.2012.00354.

Article  PubMed  PubMed Central  Google Scholar 

Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 2009;9:62–70. https://doi.org/10.1038/nri2470.

Article  PubMed  Google Scholar 

D’Acquisto F, Piras G, Rattazzi L. Pro-inflammatory and pathogenic properties of Annexin-A1: the whole is greater than the sum of its parts. Biochem Pharmacol. 2013;85:1213–8. https://doi.org/10.1016/j.bcp.2013.02.011.

Article  PubMed  Google Scholar 

Boudhraa Z, Bouchon B, Viallard C, D’Incan M, Degoul F. Annexin A1 localization and its relevance to cancer. Clin Sci. 2016;130:205–20. https://doi.org/10.1042/CS20150415.

Article  Google Scholar 

Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell. 2020;182:497–514.e422. https://doi.org/10.1016/j.cell.2020.05.039.

Article  PubMed  PubMed Central  Google Scholar 

Zhou Y, Bian X, Le Y, Gong W, Hu J, Zhang X, et al. Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst. 2005;97:823–35. https://doi.org/10.1093/jnci/dji142.

Article  PubMed  Google Scholar 

Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, Farber SH, et al. T-cell exhaustion signatures vary with tumor type and are severe in Glioblastoma. Clin Cancer Res. 2018;24:4175–86. https://doi.org/10.1158/1078-0432.CCR-17-1846.

Article  PubMed  PubMed Central  Google Scholar 

Le Naour J, Liu P, Zhao L, Adjemian S, Sztupinszki Z, Taieb J, et al. A TLR3 ligand reestablishes chemotherapeutic responses in the context of FPR1 deficiency. Cancer Discov. 2021;11:408–23. https://doi.org/10.1158/2159-8290.CD-20-0465.

Article  PubMed  Google Scholar 

Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16:e534–42. https://doi.org/10.1016/S1470-2045(15)00088-1.

Article  PubMed  PubMed Central  Google Scholar 

Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols. 2014;9:171–81. https://doi.org/10.1038/nprot.2014.006.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif