Novel concept of nano-additive design: PTFE@silica Janus nanoparticles for water lubrication

Luo J B, Zhou X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 8(4): 643–665 (2020)

Article  Google Scholar 

Liu Y F, Yu S T, Wang W Z. Nanodiamond plates as macroscale solid lubricant: A “non-layered” two-dimension material. Carbon 198: 119–131 (2022)

Article  Google Scholar 

Guo Z W, Yuan C Q, Liu A X, Jiang S. Study on tribological properties of novel biomimetic material for water-lubricated stern tube bearing. Wear 376–377: 911–919 (2017)

Article  Google Scholar 

Liu S T, Dong C L, Yuan C Q, Bai X Q, Tian Y, Zhang G L. A new polyimide matrix composite to improve friction-induced chatter performance through reducing fluctuation in friction force. Compos Part B-Eng 217: 108887 (2021)

Article  Google Scholar 

Li J J, Zhang C H, Luo J B. Superlubricity behavior with phosphoric acid–water network induced by rubbing. Langmuir 27(15): 9413–9417 (2011)

Article  Google Scholar 

Li J J, Zhang C H, Ma L R, Liu Y H, Luo J B. Superlubricity achieved with mixtures of acids and glycerol. Langmuir 29(1): 271–275 (2013)

Article  Google Scholar 

Li J J, Zhang C H, Cheng P, Chen X C, Wang W Q, Luo J B. AFM studies on liquid superlubricity between silica surfaces achieved with surfactant micelles. Langmuir 32(22): 5593–5599 (2016)

Article  Google Scholar 

Elomaa O, Singh V K, Iyer A, Hakala T J, Koskinen J. Graphene oxide in water lubrication on diamond-like carbon vs. stainless steel high-load contacts. Diam Relat Mater 52: 43–48 (2015)

Article  Google Scholar 

Wang W, Xie G X, Luo J B. Black phosphorus as a new lubricant. Friction 6(1): 116–142 (2018)

Article  Google Scholar 

Liu Y, Yu S, Li J, Ge X, Zhao Z, Wang W Z. Quantum dots of graphene oxide as nano-additives trigger macroscale superlubricity with an extremely short running-in period. Mater Today Nano 18: 100219 (2022)

Article  Google Scholar 

Ge X Y, Chai Z Y, Shi Q Y, Liu Y F, Wang W Z. Graphene superlubricity: A review. Frictionhttps://doi.org/10.1007/s40544-022-0681-y (2023).

Liu Y F, Yu S T, Shi Q Y, Ge X Y, Wang W Z. Graphene-family lubricant additives: Recent developments and future perspectives. Lubricants 10(9): 215 (2022)

Article  Google Scholar 

Wu P, Chen X C, Zhang C H, Luo J B. Synergistic tribological behaviors of graphene oxide and nanodiamond as lubricating additives in water. Tribol Int 132: 177–184 (2019)

Article  Google Scholar 

Wu H, Zhao J W, Cheng X W, Xia W Z, He A S, Yun J H, Huang S Q, Wang L Z, Huang H, Jiao S H, et al. Friction and wear characteristics of TiO2 nano-additive water-based lubricant on ferritic stainless steel. Tribol Int 117: 24–38 (2018)

Article  Google Scholar 

Liu G Q, Feng Y, Zhao N, Chen Z, Shi J Q, Zhou F. Polymer-based lubricating materials for functional hydration lubrication. Chem Eng J 429: 132324 (2022)

Article  Google Scholar 

Biswas S K, Vijayan K. Friction and wear of PTFE—A review. Wear 158(1–2): 193–211 (1992)

Article  Google Scholar 

Onodera T, Park M, Souma K, Ozawa N, Kubo M. Transfer-film formation mechanism of polytetrafluoroethylene: A computational chemistry approach. J Phys Chem C 117(20): 10464–10472 (2013)

Article  Google Scholar 

Xu Q A, Zhang J E, Li X, van Duin D M, Hu Y Z, van Duin A C T, Ma T B. How polytetrafluoroethylene lubricates iron: An atomistic view by reactive molecular dynamics. ACS Appl Mater Interfaces 14(4): 6239–6250 (2022)

Article  Google Scholar 

Palios S, Cann P M, Spikes H A. Behaviour of PTFE suspensions in rolling/sliding contacts. In: Tribology Series. Dowson D, Taylor C M, Childs T H C, Dalmaz G, Berthier Y, Flamand L, Georges J M, Lubrecht A A, Eds. Amsterdam (the Netherlands): Elsevier Amsterdam, 1996, 31: 141–152.

Article  Google Scholar 

Dubey M K, Bijwe J, Ramakumar S S V. Nano-PTFE: New entrant as a very promising EP additive. Tribol Int 87: 121–131 (2015)

Article  Google Scholar 

Qu M N, Yao Y L, He J M, Ma X R, Feng J, Liu S S, Hou L G, Liu X R. Tribological study of polytetrafluoroethylene lubricant additives filled with Cu microparticles or SiO2 nanoparticles. Tribol Int 110: 57–65 (2017)

Article  Google Scholar 

Wang N, Wang H G, Ren J F, Gao G, Zhao G R, Yang Y W, Wang J Q. High-efficient and environmental-friendly PTFE@SiO2 core–shell additive with excellent AW/EP properties in PAO6. Tribol Int 158: 106930 (2021)

Article  Google Scholar 

Saini V, Bijwe J, Seth S, Ramakumar S S V. Interfacial interaction of PTFE sub-micron particles in oil with steel surfaces as excellent extreme-pressure additive. J Mol Liq 325: 115238 (2021)

Article  Google Scholar 

Shah V, Panchal T, Bharatiya B, Patel N S, Shukla A D, Shah D O. Colloidal PTFE dispersion in commercial engine oil: Lubrication by Pluronic adsorption at the interface. Colloid Surface A 597: 124775 (2020)

Article  Google Scholar 

Saini V, Bijwe J, Seth S, Ramakumar S S V. Role of base oils in developing extreme pressure lubricants by exploring nano-PTFE particles. Tribol Int 143: 106071 (2020)

Article  Google Scholar 

Sharma V, Timmons R, Erdemir A, Aswath P B. Plasma-functionalized polytetrafluoroethylene nanoparticles for improved wear in lubricated contact. ACS Appl Mater Interfaces 9(30): 25631–25641 (2017)

Article  Google Scholar 

Gangwani P, Gupta M K, Bijwe J. Synergism between particles of PTFE and hBN to enhance the performance of oils. Wear 384–385: 169–177 (2017)

Article  Google Scholar 

De Gennes P G. Soft matter (Nobel lecture). Angew Chem Int Ed 31(7): 842–845 (1992)

Article  Google Scholar 

Walther A, Müller A H E. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem Rev 113(7): 5194–5261 (2013)

Article  Google Scholar 

Behrens S. Preparation of functional magnetic nanocomposites and hybrid materials: Recent progress and future directions. Nanoscale 3(3): 877–892 (2011)

Article  Google Scholar 

Liang F X, Zhang C L, Yang Z Z. Rational design and synthesis of Janus composites. Adv Mater 26(40): 6944–6949 (2014)

Article  Google Scholar 

Duan Y, Qu S G, Li X Q. Effect of quench-tempering conditions prior to nitriding on microstructure and fretting wear mechanism of gas nitrided X210CrW12 steel. Surf Coat Tech 360: 247–258 (2019)

Article  Google Scholar 

Ren Z C, Qin H F, Dong Y L, Doll G L, Ye C. A boron-doped diamond like carbon coating with high hardness and low friction coefficient. Wear 436–437: 203031 (2019)

Article  Google Scholar 

Yang Y W, Ma L M, Wang H G, Jia W H, Zhu J Y, Wang J Q, Yang S R. A novel water-based lubricating additive of GO@PTFE: Superior tribological performances from the synergistic effect. Tribol Int 169: 107485 (2022)

Article  Google Scholar 

Park B H, Lee M H, Kim S B, Jo Y M. Evaluation of the surface properties of PTFE foam coating filter media using XPS and contact angle measurements. Appl Surf Sci 257(8): 3709–3716 (2011)

Article  Google Scholar 

Huang Z M, Meng J T, Xie M L, Shen Y E, Huang Y H. A pretreatment method to form high-quality LiF-enriched solid–electrolyte interfaces for Li anode protection in Li–O2 batteries. J Mater Chem A 8(28): 14198–14204 (2020)

Article  Google Scholar 

Wang W, Xie G X, Luo J B. Superlubricity of black phosphorus as lubricant additive. ACS Appl Mater Interfaces 10(49): 43203–43210 (2018)

Article  Google Scholar 

Nansé G, Papirer E, Fioux P, Moguet F, Tressaud A. Fluorination of carbon blacks: An X-ray photoelectron spectroscopy study: I. A literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds. Carbon 35(2): 175–194 (1997)

Article  Google Scholar 

Durand E, Labrugère C, Tressaud A, Renaud M. Surface fluorination of carboxylated nitrile butadiene rubber: An XPS study. Plasmas Polym 7(4): 311–325 (2002)

Article  Google Scholar 

Sun H, Liang P, Zhu G Z, Hung W H, Li Y Y, Tai H C, Huang C L, Li J C, Meng Y T, Angell M, et al. A high-performance potassium metal battery using safe ionic liquid electrolyte. PNAS 117(45): 27847–27853 (2020)

Article  Google Scholar 

Portela C, Ye J. Architectures down to nano. Nat Mater 20(11): 1451 (2021)

Article  Google Scholar 

Gong D L, Zhang B, Xue Q J, Wang H L. Effect of tribochemical reaction of polytetrafluoroethylene transferred film with substrates on its wear behaviour. Wear 137(2): 267–273 (1990)

Article  Google Scholar 

Liu Y F, Li J J, Chen X C, Luo J B. Fluorinated graphene: A promising macroscale solid lubricant under various environments. ACS Appl Mater Interfaces 11(43): 40470–40480 (2019)

Article  Google Scholar 

Liu Y F, Chen X C, Li J J, Luo J B. Enhancement of friction performance enabled by a synergetic effect between graphene oxide and molybdenum disulfide. Carbon 154: 266–276 (2019)

Article  Google Scholar 

Liu Y F, Ge X Y, Li J J. Graphene lubrication. Appl Mater Today 20: 100662 (2020)

Article  Google Scholar 

Qi H M, Guo Y X, Zhang L G, Li G T, Zhang G, Wang T M, Wang Q H. Covalently attached mesoporous silica–ionic liquid hybrid nanomaterial as water lubrication additives for polymer–metal tribopair. Tribol Int 119: 721–730 (2018)

Article  Google Scholar 

Wang N, Wang H G, Ren J F, Gao G, Chen S S, Zhao G R, Yang Y W, Wang J Q. Novel additive of PTFE@SiO2 core–shell nanoparticles with superior water lubricating properties. Mater Design 195: 109069 (2020)

Article  Google Scholar 

Harris K L, Pitenis A A, Sawyer W G, Krick B A, Blackman G S, Kasprzak D J, Junk C P. PTFE tribology and the role of mechanochemistry in the development of protective surface films. Macromolecules 48(11): 3739–3745 (2015)

Article  Google Scholar 

留言 (0)

沒有登入
gif