Formation of nanoscale phases during rapid solidification of Al–Cu–Si alloys

Awe SA (2021) Solidification and microstructural formation of a ternary eutectic Al–Cu–Si cast alloy. J King Saud Univ Eng Sci 33:569–580. https://doi.org/10.1016/j.jksues.2020.07.004

Article  Google Scholar 

Campbell FC (2006) Manufacturing technology for aerospace structural materials. Elsevier, Amsterdam

Google Scholar 

Cantor B, Grant P, Johnston C (2008) Automotive engineering lightweight, functional, and novel materials. Taylor & Francis Group, New York

Book  Google Scholar 

Celtek M (2019) The effect of atomic concentration on the structural evolution of Zr100−xCox alloys during rapid solidification process. J Non-Cryst Solids 513:84–96. https://doi.org/10.1016/j.jnoncrysol.2019.03.014

Article  CAS  Google Scholar 

Chatelier C, Anand K, Gille P, De Weerd M-C, Ledieu J, Fournée V, Resta A, Vlad A, Garreau Y, Coati A, Gaudry É (2023) Revealing the epitaxial interface between Al13Fe4 and Al5Fe2 enabling atomic Al interdiffusion. ACS Appl Mater Interfaces 15(15):19593–19603. https://doi.org/10.1021/acsami.2c22886

Article  CAS  Google Scholar 

Cooper KP, Jones III HN (2001) Microstructural evolution in rapidly solidified Al–Cu–Si ternary alloys. J Mater Sci 36:5315–5323. https://doi.org/10.1023/A:1012434926602

Article  CAS  Google Scholar 

Costa TA, Moreira AL, Moutinho DJ et al (2015) Growth direction and Si alloying affecting directionally solidified structures of Al–Cu–Si alloys. Mater Sci Technol 31:1103–1112. https://doi.org/10.1179/1743284714Y.0000000678

Article  CAS  Google Scholar 

de Gouveia GL, Kakitani R, Gomes LF et al (2019) Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: Interplay of cooling rate and microstructure in mechanical properties. J Mater Res 34:1381–1394

Article  Google Scholar 

De Wilde J, Froyen L (2006) Microstructures observed during directional solidification along the univariant eutectic reaction in a ternary Al–Cu–Si alloy. Mater Sci Forum 508:51–56. https://doi.org/10.4028/www.scientific.net/MSF.508.51

Article  CAS  Google Scholar 

Du D, Dong A, Shu D et al (2022) Microstructure and crystallization evolution of directionally solidified Al–Cu–Si alloys with the assistance of a static magnetic field. Metall Mater Trans A 53:3166–3178. https://doi.org/10.1007/s11661-022-06735-w

Article  CAS  Google Scholar 

Ferreira IL, Garcia A, Nestler B (2004) On macrosegregation in ternary Al–Cu–Si alloys: numerical and experimental analysis. Scripta Mater 50:407–411. https://doi.org/10.1016/j.scriptamat.2003.11.012

Article  CAS  Google Scholar 

Ferreira IL, Moutinho DJ, Gomes LG et al (2010) Microstructural development in a ternary Al–Cu–Si alloy during transient solidification. Mater Sci Forum 636–637:643–650. https://doi.org/10.4028/www.scientific.net/MSF.636-637.643

Article  CAS  Google Scholar 

Gloria A, Montanari R, Richetta M, Varone A (2019) Alloys for aeronautic applications: state of the art and perspectives. Metals 9:662. https://doi.org/10.3390/met9060662

Article  CAS  Google Scholar 

Gouveia GL, Gomes LF, Cheung N et al (2021) Mechanical properties, microstructural features, and correlations with solidification rates of Al–Cu–Si ultrafine eutectic alloys. Adv Eng Mater 23:2001177. https://doi.org/10.1002/adem.202001177

Article  CAS  Google Scholar 

Guder V, Celtek M, Celik FA, Sengul S (2023) Crystallization analysis and determination of Avrami exponents during isothermal annealing and the effect of cooling rate on the evolution of the atomic structure of Pd78Si16Cu6 alloy: a molecular dynamics simulation study. J Non-Cryst Solids 602:122067. https://doi.org/10.1016/j.jnoncrysol.2022.122067

Article  CAS  Google Scholar 

Hallstedt B, Gröbner J, Hampl M, Schmid-Fetzer R (2016) Calorimetric measurements and assessment of the binary Cu–Si and ternary Al–Cu–Si phase diagrams. CALPHAD Comput Coupling Phase Diagr Thermochem 53:25–38. https://doi.org/10.1016/j.calphad.2016.03.002

Article  CAS  Google Scholar 

Jafary-Zadeh M, Aitken ZH, Tavakoli R, Zhang Y (2018) On the controllability of phase formation in rapid solidification of high entropy alloys. J Alloys Compd 748:679–686. https://doi.org/10.1016/j.jallcom.2018.03.165

Article  CAS  Google Scholar 

Jelinek B, Groh S, Horstemeyer MF et al (2012) Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Phys Rev B 85(24):245102. https://doi.org/10.1103/physrevb.85.245102

Article  Google Scholar 

Kobatake H, Schmitz Ju, Brillo Ju (2014) Density and viscosity of ternary Al–Cu–Si liquid alloys. J Mater Sci 49:3541–3549. https://doi.org/10.1007/s10853-014-8072-z

Article  CAS  Google Scholar 

Kong S, Liu Q, Zhang Z (2023) Mechanism on material strengthening of metastable precipitate and edge dislocation in Al–Mg–Si alloy. Physica Status Solidi (b) Basic Res. https://doi.org/10.1002/pssb.202200478

Article  Google Scholar 

Kumar A, Gupta M (2016) An insight into evolution of light weight high entropy alloys: a review. Metals 6:199. https://doi.org/10.3390/met6090199

Article  CAS  Google Scholar 

Li Y, Zhang Y (2019) High entropy alloys. Intechopen

Mo Y-F, Tian Z-A, Liu R-S et al (2016) Molecular dynamics study on microstructural evolution during crystallization of rapidly supercooled zirconium melts. J Alloys Compd 688:654–665. https://doi.org/10.1016/j.jallcom.2016.07.221

Article  CAS  Google Scholar 

Mudry S, Shtablavyi I (2005) Influence of Al on the structure of liquid Cu0.70Si0.30 eutectic alloy. Phys Chem Liq 43:5–12. https://doi.org/10.1080/0031910042000303509

Article  CAS  Google Scholar 

Mudry S, Shtablavyi I, Liudkevych U (2017) The relation between structure changes and thermal expansion in liquid indium. Phys Chem Liq 55:254–263. https://doi.org/10.1080/00319104.2016.1198482

Article  CAS  Google Scholar 

Mudryi SI, Shtablavyi II, Kulyk YO et al (2016) Influence of nickel on the structure of Al0.878Si0.122 liquid eutectic. Mater Sci 51:583–588. https://doi.org/10.1007/s11003-016-9879-3

Article  CAS  Google Scholar 

Muratov OS, Roiik OS, Kazimirov VP et al (2014a) X-ray diffraction studies of the Ni–Si and Al–Ni–Si melts. J Mol Liq 200(Part B):213–222. https://doi.org/10.1016/j.molliq.2014.10.024

Article  CAS  Google Scholar 

Muratov OS, Roik OS, Kazimirov VP et al (2014b) X-ray diffraction studies of the liquid and melt-spun Al–Co–Si alloys. J Non-Cryst Solids 401:44–49. https://doi.org/10.1016/j.jnoncrysol.2014.01.030

Article  CAS  Google Scholar 

Nguyen-Trong D, Pham-Huu K, Nguyen-Tri P (2019) Simulation on the factors affecting the crystallization process of FeNi alloy by molecular dynamics. ACS Omega 4:14605–14612. https://doi.org/10.1021/acsomega.9b02050

Article  CAS  Google Scholar 

Nykyruy Y, Kulyk MS, Shtablavyi Y, Serkiz I, Girzhon R, Smolyakov VO (2020) Structure and phase transformations of amorphous-nanocrystalline Al-based alloy. Appl Nanosci (switzerland) 10:4385–4393. https://doi.org/10.1007/s13204-020-01340-y

Article  CAS  Google Scholar 

Osório WR, Peixoto LC, Moutinho DJ (2011) Corrosion resistance of directionally solidified Al–6Cu–1Si and Al–8Cu–3Si alloys castings. Mater Des 32:3832–3837. https://doi.org/10.1016/j.matdes.2011.03.013

Article  CAS  Google Scholar 

Plechystyy V, Shtablavyi I, Winczewski S, Rybacki K, Tsizh B, Mudry S, Rybicki J (2021) Effect of heat treatment on the diffusion intermixing and structure of the Cu thin film on Si (111) substrate: a molecular dynamics simulation study. Mol Simul 47:1381–1390. https://doi.org/10.1080/08927022.2021.1974433

Article  CAS  Google Scholar 

Plechystyy V, Shtablavyi I, Tsizh B, Mudry S, Rybicki J (2022) Atomic composition and structure evolution of the solid-liquid boundary in Al–Si system during interfacial diffusion and contact melting. J Phase Equilib Diffus 43(2):256–265. https://doi.org/10.1080/08927022.2021.1974433

Article  CAS  Google Scholar 

Ponweiser N, Richter KW (2012) New investigation of phase equilibria in the system Al–Cu–Si. J Alloys Compd 512:252–263. https://doi.org/10.1016/j.jallcom.2011.09.076

Article  CAS  Google Scholar 

Raghavan V (2010) Al–Cu–Si (aluminum-copper-silicon). J Phase Equilib Diffus 31:39–40. https://doi.org/10.1007/s11669-009-9618-7

Article  CAS  Google Scholar 

Ruan Y, Wei B (2009) Rapid solidification of undercooled Al–Cu–Si eutectic alloys. Chin Sci Bull 54:53–58. https://doi.org/10.1007/s11434-008-0540-x

Article  CAS  Google Scholar 

Sanchez JM, Vicario I, Albizuri J, Guraya T, Garcia JC (2019) Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys. J Mater Res Technol 8:795–803. https://doi.org/10.1016/j.jmrt.2018.06.010

Article  CAS  Google Scholar 

Sharma A, Oh MC, Ahn B (2020) Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy. Mater Sci Eng A 797:140066. https://doi.org/10.1016/j.msea.2020.140066

Article  CAS  Google Scholar 

Sheng HW, He JH, Ma E (2002) Molecular dynamics simulation studies of atomic-level structures in rapidly quenched Ag–Cu nonequilibrium alloys. Phys Rev B 65:184203. https://doi.org/10.1103/PhysRevB.65.184203

Article  CAS  Google Scholar 

Wu K, Zhang L, Wang D et al (2022) A comparative study of interfacial thermal conductance between metal and semiconductor. Sci Rep 12:19907. https://doi.org/10.1038/s41598-022-24379-z

Article  CAS  Google Scholar 

Xu H, Bao H, Li Y, Bai H, Ma F (2021) Atomic scale insights into the rapid crystallization and precipitation behaviors in FeCu binary alloys. J Alloys Comp 882:160725. https://doi.org/10.1016/j.jallcom.2021.160725

Article 

留言 (0)

沒有登入
gif