Adsorptive-photocatalytic removal of orange–yellow dye with titanium oxide–activated carbon composites

Akakuru OU, Iqbal ZM, Wu A (2020) TiO2 Nanoparticles: Properties and Applications. In: TiO2 Nanoparticles. https://doi.org/10.1002/9783527825431.ch1

Ali A, Shoeb M, Li B, Khan MA (2022) Photocatalytic degradation of antibiotic drug and dye pollutants under visible-light irradiation by reduced graphene oxide decorated MoO3/TiO2 nanocomposite. Mater Sci Semicond. https://doi.org/10.1016/j.mssp.2022.106974

Article  Google Scholar 

Batista CC, Cunha R, Santos AC, Reis PM, at all, (2022) Synthesis of a reusable magnetic photocatalyst based on carbon xerogel/TiO2 composites and its application on acetaminophen degradation. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.08.018

Article  Google Scholar 

Cardona Y, Węgrzyn A, Miśkowiec P, Korili SA, Gil A (2023) Heterogeneous Fenton- and photo-Fenton-like catalytic degradation of emerging pollutants using Fe2O3/TiO2/pillared clays synthesized from aluminum industrial wastes. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2023.103494

Article  Google Scholar 

Chen Q, Wang K, Gao G, Ren J, Duan R, Fang Y, Xun HuX (2021) Singlet oxygen generation boosted by Ag–Pt nanoalloy combined with disordered surface layer over TiO2 nanosheet for improving the photocatalytic activity. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.147944

Article  Google Scholar 

Davarikia Y, Aroujalian A, Salimi P (2022) Immobilization of TiO2 nanoparticles on PES substrate via dopamine and poly (vinyl alcohol) for long-term oil/water purification. Process Saf Environ Prot. https://doi.org/10.1016/j.psep.2022.08.067

Article  Google Scholar 

Dawngliana KMS, Fanai AL, Rai S (2023) Structural and optical studies of Sm3+-doped silica glass along with TiO2 nanoparticles for photonic applications. J Non Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2023.122226

Article  Google Scholar 

Dlamini MC, Maubane-Nkadimeng MS, Moma JA (2021) The use of TiO2/clay heterostructures in the photocatalytic remediation of water containing organic pollutants: a review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.106546

Article  Google Scholar 

Escamilla-Mejía JC, Hidalgo-Carrillo J, Martín-Gómez J, López-Tenllado FJ, Estévez-Toledano RC, Marinas A, Urbano FJ (2023) Pt Preferential incorporation onto TiO2 in TiO2-carbon composites for hydrogen production from glycerol photoreforming. Catal Today. https://doi.org/10.1016/j.cattod.2022.11.004

Article  Google Scholar 

Franz S, Bestetti M (2023) 5 - Kinetic models in photoelectrocatalysis. In: Palmisano L, Yurdakal S (ed) Photoelectrocatalysis, Elsevier. https://doi.org/10.1016/B978-0-12-823989-6.00009-6

Gakhar T, Rosenwaks Y, Hazra F (2022) Fullerene (C60) functionalized TiO2 nanotubes for conductometric sensing of formaldehyde. Sens. Actuators B Chem. https://doi.org/10.1016/j.snb.2022.131892

Gonzalez ES, Olmos D, Lorente MA, Velaz I, Gonzalez-Benito J (2018) Preparation and characterization of polymer composite materials based on PLA/TiO2 for antibacterial packaging. Polymers. https://doi.org/10.3390/polym10121365

Guo X, Zhang B, Lin Z et al (2018) Interface engineering of TiO2/perovskite interface via fullerene derivatives for high performance planar perovskite solar cells. Org Electron. https://doi.org/10.1016/j.orgel.2018.08.039

Article  Google Scholar 

Ivanenko I, Voronova A, Astrelin I, Romanenko Y (2019) Structural and catalytic properties of Ni–Co spinel and its composites. Bull Mater Scie. https://doi.org/10.1007/s12034-019-1854-9

Article  Google Scholar 

Justin BTD, Blaise N, Valery HG (2023) Investigation of the photoactivation effect of TiO2 onto carbon-clay paste electrode by cyclic voltammetry analysis. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e13474

Article  Google Scholar 

Korde SA, Thombre PB, Dipake SS, Sangshetti JN, Rajbhoj AS, Gaikwad ST (2023) Neem Gum (Azadirachta indicia) facilitated green synthesis of TiO2 and ZrO2 nanoparticles as antimicrobial agents. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2023.110777

Article  Google Scholar 

Kukh AA, Ivanenko IM, Astrelin IM (2018) TiO2 and its composites as effective photocatalyst for glucose degradation processes. Appl Nanoscie. https://doi.org/10.1007/s13204-018-0691-2

Article  Google Scholar 

Kukh A, Ivanenko I, Asterlin I (2020) Composite titanium dioxide photocatalytically active materials: review. In: O. Fesenko, L. Yatsenko (ed) Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications Cham, Switzerland: Springer proceedings in physic. https://doi.org/10.1007/978-3-030-52268-1_28

Kusworo TD, Yulfarida M, Kumoro AC, Utomo DP (2023) Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2022.04.028

Article  Google Scholar 

Lei B, Robertson N (2023) TiO2 mesocrystals: Immobilisation, surface fluorination and application in photocatalytic water treatment. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2023.156487

Article  Google Scholar 

Lei L, Sang L, Gao Y (2022) Pulse electrodeposition of Ag, Cu nanoparticles on TiO2 nanoring/nanotube arrays for enhanced photoelectrochemical water splitting. Adv Powder Technol. https://doi.org/10.1016/j.apt.2022.103511

Article  Google Scholar 

Li Y, Liu S, Lu X, Zhao H, Cui J, Zhang Y, He W (2023) Hydrothermal synthesis of carbon-coated mixed crystalline phase TiO2 nanoparticle carbon microsphere composites as high performance anode materials for Li-ion batteries. Diam Relat Mater. https://doi.org/10.1016/j.diamond.2023.109913

Article  Google Scholar 

Ma H, Liu H, Xu Y, Chang Y, Zhou X (2023) Energy aggregation properties of TiO2-silica composite aerogel under ultra-high-energy (7 kW·cm-2) continuous-wave laser irradiation. Ceram Int. https://doi.org/10.1016/j.ceramint.2023.03.247

Article  Google Scholar 

Millán-Franco MA, Rodríguez-Castañeda CA, Moreno-Romero PM, Prias-Barragán JJ, Jaramillo-Quintero OA, Hu H (2023) A direct correlation between structural and morphological defects of TiO2 thin films on FTO substrates and photovoltaic performance of planar perovskite solar cells. Mater Sci Semicond. https://doi.org/10.1016/j.mssp.2023.107452

Article  Google Scholar 

Mingmuang Y, Chanlek N, Moontragoon P, Srepusharawoot P, Thongbai P (2022) Effects of Sn4+ and Ta5+ dopant concentration on dielectric and electrical properties of TiO2: Internal barrier layer capacitor effect. Results Phys. https://doi.org/10.1016/j.rinp.2022.106029

Article  Google Scholar 

Rao VN, Sairam PK, Kim MD et al (2023) CdS/TiO2 nano hybrid heterostructured materials for superior hydrogen production and gas sensor application. J Environ Manag. https://doi.org/10.1016/j.jenvman.2023.117895

Article  Google Scholar 

Ren L, Ma S, Shi Y, Zhao C, Wang XL, Gao Z, Xie H (2023) Insights into the pivotal role of surface defects on anatase TiO2 nanosheets with exposed 001 facets for enhanced photocatalytic activity. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2023.112255

Article  Google Scholar 

Rincón GJ, La Motta EJ (2019) A fluidized-bed reactor for the photocatalytic mineralization of phenol on TiO2-coated silica gel. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01966

Article  Google Scholar 

Rind IK, Tuzen M, Sarı A, Lanjwani MF, Memon N, Saleh TA (2023) Synthesis of TiO2 nanoparticles loaded on magnetite nanoparticles modified kaolinite clay (KC) and their efficiency for As(III) adsorption. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2023.01.046

Article  Google Scholar 

Surovčík J, Medvecká V, Greguš J, Gregor M, Roch T, Annušová A, Ďurina P, Vojteková T (2022) Characterization of TiO2 nanofibers with enhanced photocatalytic properties prepared by plasma assisted calcination. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.08.309

Article  Google Scholar 

Terescenco D, Hucher N, Savary G, Picard C (2019) From interface towards organised network: Questioning the role of the droplets arrangements in macroscopically stable O/W emulsions composed of a conventional non-ionic surfactant, TiO2 particles, or their mixture. Physicochem Eng Asp, Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2019.123630

Book  Google Scholar 

Tian Z, Song Y, Tao K, Liu N, Qin S, Yang J, Li J, Cui Z (2023) Preparation of TiO2-Ag heterostructure via tannic acid-assistance and its immobilization on PVDF membrane for the degradation of dye under visible light. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2023.157195

Article  Google Scholar 

Wang M, Jin C, Luo Q, Kim EJ (2020) Sol-gel derived TiO2–carbon composites with adsorption-enhanced photocatalytic activity and gas sensing performance. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.04.171

Article  Google Scholar 

Wang L, Qiu J, Wu N, Yu X, An X (2023) TiO2/ CsPbBr 3 S-scheme heterojunctions with highly improved CO2 photoreduction activity through facet-induced Fermi level modulation. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2022.08.120

Article  Google Scholar 

Wei P, Zhang Y, Huang Y, Chen L (2023) Structural design of SiO2/TiO2 materials and their adsorption-photocatalytic activities and mechanism of treating cyanide wastewater. J Mol Liq. https://doi.org/10.1016/j.molliq.2023.121519

Article  Google Scholar 

Ye X, Li Z, Sun H, Wu M, An Z, Pang Y, Yang J, Zheng S (2022) Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries. New Carbon Mater. https://doi.org/10.1016/S1872-5805(22)60607-3

Article  Google Scholar 

Zandonà A, Chesneau E, Helsch G, Canizarès A, Deubener J, Montouillout V, Fayon F, Allix M (2022) Glass-forming ability and structural features of melt-quenched and gel-derived SiO2-TiO2 glasses. J Non Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2022.121967

Article  Google Scholar 

Zhang Y, Xiong M, Sun A, Shi Z, Zhu B, Macharia DK, Li F, Chen Z, Liu J, Zhang L (2021) MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.125782

Article  Google Scholar 

留言 (0)

沒有登入
gif