High-LET charged particles: radiobiology and application for new approaches in radiotherapy

Malouff TD, Mahajan A, Krishnan S et al (2020) Carbon Ion therapy: a modern review of an emerging technology. Front Oncol 10:1–13. https://doi.org/10.3389/fonc.2020.00082

Article  Google Scholar 

Krämer M, Kraft G (1994) Calculations of heavy-ion track structure. Radiat Environ Biophys 33:91–109. https://doi.org/10.1007/BF01219334

Article  PubMed  Google Scholar 

Krämer M, Kraft G (1994) Track structure and DNA damage. Adv Space Res 14:151–159. https://doi.org/10.1016/0273-1177(94)90465-0

Article  PubMed  Google Scholar 

Weber U, Kraft G (2009) Comparison of carbon ions versus protons. Cancer J 15:325–332. https://doi.org/10.1097/PPO.0b013e3181b01935

Article  CAS  PubMed  Google Scholar 

Goodhead DT (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 65:7–17. https://doi.org/10.1080/09553009414550021

Article  CAS  PubMed  Google Scholar 

Raju MR (1995) Proton radiobiology, radiosurgery and radiotherapy. Int J Radiat Biol 67:237–259. https://doi.org/10.1080/09553009514550301

Article  CAS  PubMed  Google Scholar 

Paganetti H (2014) Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 59:R419–R472. https://doi.org/10.1088/0031-9155/59/22/R419

Article  PubMed  Google Scholar 

Tommasino F, Scifoni E, Durante M (2015) New ions for therapy. Int J Part Ther 2:428–438. https://doi.org/10.14338/IJPT-15-00027.1

Article  Google Scholar 

Durante M, Debus J, Loeffler JS (2021) Physics and biomedical challenges of cancer therapy with accelerated heavy ions. Nat Rev Phys 3:777–790. https://doi.org/10.1038/s42254-021-00368-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamada T, Tsujii H, Blakely EA et al (2015) Carbon ion radiotherapy in Japan: An assessment of 20 years of clinical experience. Lancet Oncol 16:e93–e100. https://doi.org/10.1016/S1470-2045(14)70412-7

Article  PubMed  Google Scholar 

Tinganelli W, Durante M (2020) Carbon ion radiobiology. Cancers 12:1–43. https://doi.org/10.3390/cancers12103022

Article  CAS  Google Scholar 

Durante M, Paganetti H (2016) Nuclear physics in particle therapy: a review. Rep Prog Phys 79:1–59. https://doi.org/10.1088/0034-4885/79/9/096702

Article  CAS  Google Scholar 

Kraft G (2000) Tumor therapy with heavy charged particles. Prog Part Nucl Phys 45:S473–S544. https://doi.org/10.1016/S0146-6410(00)00112-5

Article  Google Scholar 

Mairani A, Mein S, Blakely E et al (2022) Roadmap: Helium ion therapy. Phys Med Biol 67:1–62. https://doi.org/10.1088/1361-6560/ac65d3

Article  Google Scholar 

Friedrich T, Scholz U, Elsässer T et al (2013) Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J Radiat Res 54:494–514. https://doi.org/10.1093/jrr/rrs114

Article  CAS  PubMed  Google Scholar 

Fournier C, Scholz M, Weyrather WK et al (2001) Changes of fibrosis-related parameters after high- and low-LET irradiation of fibroblasts. Int J Radiat Biol 77:713–722. https://doi.org/10.1080/095530000110045025

Article  CAS  PubMed  Google Scholar 

Durante M, Loeffler JS (2010) Charged particles in radiation oncology. Nat Rev Clin Oncol 7:37–43. https://doi.org/10.1038/nrclinonc.2009.183

Article  PubMed  Google Scholar 

Paganetti H (2022) Mechanisms and review of clinical evidence of variations in relative biological effectiveness in proton therapy. Int J Radiat Oncol Biol Phys 112:222–236. https://doi.org/10.1016/j.ijrobp.2021.08.015

Article  PubMed  Google Scholar 

Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383–425. https://doi.org/10.1103/RevModPhys.82.383

Article  Google Scholar 

Franken NAP, ten Cate R, Krawczyk PM et al (2011) Comparison of RBE values of high- LET α‑particles for the induction of DNA-DSBs, chromosome aberrations and cell reproductive death. Radiat Oncol 6:1–8. https://doi.org/10.1186/1748-717X-6-64

Article  Google Scholar 

Durante M, Grossi GF, Gialanella G et al (1995) Effects of α‑particles on survial and chromosomal aberrations in human mammary epithelial cells. Radiat Environ Biophys 34:195–204. https://doi.org/10.1007/BF01211548

Article  CAS  PubMed  Google Scholar 

Zoetelief J, Barendsen GW (1983) Dose-effect relationships for induction of cell inactivation and asymmetrical chromosome exchanges in three cell lines by photons and neutrons of different energy. Int J Radiat Biol 43:349–362. https://doi.org/10.1080/09553008314550421

Article  CAS  Google Scholar 

Weyrather K, Ritter S, Scholz M (1999) RBE for carbon track-segment irradiation in cell lines of differing repair capacity. Int J Radiat Biol 75:1357–1364. https://doi.org/10.1080/095530099139232

Article  CAS  PubMed  Google Scholar 

Friedrich T, Pfuhl T, Scholz M (2021) Update of the particle irradiation data ensemble (PIDE) for cell survival. J Radiat Res 62:645–655. https://doi.org/10.1093/jrr/rrab034

Article  PubMed  PubMed Central  Google Scholar 

Saager M, Peschke P, Welzel T et al (2018) Late normal tissue response in the rat spinal cord after carbon ion irradiation. Radiat Oncol 13:1–9. https://doi.org/10.1186/s13014-017-0950-5

Article  CAS  Google Scholar 

Saager M, Glowa C, Peschke P et al (2020) Fractionated carbon ion irradiations of the rat spinal cord: Comparison of the relative biological effectiveness with predictions of the local effect model. Radiat Oncol 15:1–10. https://doi.org/10.1186/s13014-019-1439-1

Article  Google Scholar 

Ando K, Koike S, Uzawa A et al (2005) Biological gain of carbon-ion radiotherapy for the early response of tumor growth delay and against early response of skin reaction in mice. J Radiat Res 46:51–57. https://doi.org/10.1269/jrr.46.51

Article  PubMed  Google Scholar 

Sorensen BS, Horsman MR, Alsner J et al (2015) Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncol 54:1623–1630. https://doi.org/10.3109/0284186X.2015.1069890

Article  CAS  PubMed  Google Scholar 

Welzel T, Bendinger AL, Glowa C et al (2021) Longitudinal MRI study after carbon ion and photon irradiation: shorter latency time for myelopathy is not associated with differential morphological changes. Radiat Oncol 16:1–10. https://doi.org/10.1186/s13014-021-01792-8

Article  CAS  Google Scholar 

Hintz L, Glowa C, Saager M et al (2022) Relative biological effectiveness of single and split helium ion doses in the rat spinal cord increases strongly with linear energy transfer. Radiother Oncol 170:224–230. https://doi.org/10.1016/j.radonc.2022.03.017

Article  CAS  PubMed  Google Scholar 

Ando K, Koike S, Nojima K et al (1998) Mouse skin reactions following fractionated irradiation with carbon ions. Int J Radiat Biol 74:129–138. https://doi.org/10.1080/095530098141799

Article  CAS  PubMed  Google Scholar 

Zacharias T, Dörr W, Enghardt W et al (1997) Acute response of pig skin to irradiation with 12C-ions or 200 kV x- rays. Acta Oncol 36:637–642. https://doi.org/10.3109/02841869709001328

Article  CAS  PubMed  Google Scholar 

Brownstein JM, Wisdom AJ, Castle KD et al (2018) Characterizing the potency and impact of carbon Ion therapy in a primary mouse model of soft tissue sarcoma. Mol Cancer Ther 17:858–868. https://doi.org/10.1158/1535-7163.MCT-17-0965

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedrich T, Scholz U, Elssser T et al (2012) Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int J Radiat Biol 88:103–107. https://doi.org/10.3109/09553002.2011.611213

Article  CAS  PubMed  Google Scholar 

Claesson K, Magnander K, Kahu H et al (2011) RBE of α‑particles from 211At for complex DNA damage and cell survival in relation to cell cycle position. Int J Radiat Biol 87:372–384. https://doi.org/10.3109/09553002.2011.538127

Article  CAS  PubMed  Google Scholar 

Pinto M, Prise KM, Michael BD (2005) Evidence for complexity at the nanometer scale of radiation-induced DNA DSBs as a determinant of rejoining kinetics. Radiat Res 164:73–85. https://doi.org/10.1667/RR3394

Article  CAS  PubMed  Google Scholar 

Asaithamby A, Hu B, Chen DJ (2011) Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci U S A 108:8293–8298. https://doi.org/10.1073/pnas.1016045108

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif