Investigation of the optimal light parameters for photobiomodulation to induce osteogenic differentiation of the human bone marrow stem cell and human umbilical vein endothelial cell co-culture

Qu H, Fu H, Han Z et al (2019) Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 9(45):26252–26262

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

Article  PubMed  PubMed Central  Google Scholar 

Ciuffreda MC, Malpasso G, Musarò P et al (2016) Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages. In: Gnecchi M (ed) Mesenchymal stem cells: methods and protocols. Springer New York, New York, NY, pp 149–58

Chapter  Google Scholar 

Zhang S, Zhou M, Ye Z et al (2017) Fabrication of viable and functional pre-vascularized modular bone tissues by coculturing MSCs and HUVECs on microcarriers in spinner flasks. Biotechnol J 12:1700008

Article  Google Scholar 

Paschos NK, Brown WE, Eswaramoorthy R et al (2015) Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 9(5):488–503

Article  CAS  PubMed  Google Scholar 

Meng X, Gao X, Chen X et al (2021) Umbilical cord-derived mesenchymal stem cells exert anti-fibrotic action on hypertrophic scar-derived fibroblasts in co-culture by inhibiting the activation of the TGF β1/Smad3 pathway. Exp Ther Medicine 21(3):1

Article  Google Scholar 

Bidarra SJ, Barrias CC, Barbosa MA et al (2011) Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. Stem Cell Res 7(3):186–197

Article  PubMed  Google Scholar 

Choi K, Kang BJ, Kim H et al (2013) Low-level laser therapy promotes the osteogenic potential of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix. J Biomed Mater Res B Appl Biomater 101(6):919–928

Article  PubMed  Google Scholar 

Alves AMM, de Miranda Fortaleza LM, Ferreira DCL et al (2018) Evaluation of bone repair after application of a norbixin membrane scaffold with and without laser photobiomodulation (λ 780 nm). Lasers Med Sci 33(7):1493–1504

Article  PubMed  Google Scholar 

Amaroli A, Agas D, Laus F et al (2018) The effects of photobiomodulation of 808 nm diode laser therapy at higher fluence on the in vitro osteogenic differentiation of bone marrow stromal cells. Front Physiol 9:123

Article  PubMed  PubMed Central  Google Scholar 

Karu TI (2013) Cellular and molecular mechanisms of photobiomodulation (low-power laser therapy). IEEE J Sel Top Quantum Electron 20(2):143–148

Article  Google Scholar 

Bai J, Li L, Kou N et al (2021) Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res Ther 12(1):432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tani A, Chellini F, Giannelli M et al (2018) Red (635 nm), Near-infrared (808 nm) and violet-blue (405 nm) photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study. Int J Mol Sci 19(7):1946

Topaloglu N, Özdemir M, Çevik ZBY (2021) Comparative analysis of the light parameters of red and near-infrared diode lasers to induce photobiomodulation on fibroblasts and keratinocytes: an in vitro study. Photodermatol, Photoimmunol Photomed 37(3):253–62

Article  CAS  PubMed  Google Scholar 

Mellergaard M, Fauverghe S, Scarpa C et al (2021) Evaluation of fluorescent light energy for the treatment of acute second-degree burns. Mil Med 186:416–423

Article  PubMed  Google Scholar 

Dompe C, Moncrieff L, Matys J et al (2020) Photobiomodulation—underlying mechanism and clinical applications. J Clin Med 9(6):1724

Article  PubMed  PubMed Central  Google Scholar 

Hawkins D, Abrahamse HJP, Therapy L (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24(6):705–714

Article  CAS  PubMed  Google Scholar 

Karic V, Chandran R, Abrahamse H (2021) Laser-induced differentiation of human adipose-derived stem cells to temporomandibular joint disc cells. Lasers Surg Med 53(4):567–577

Article  PubMed  Google Scholar 

Otremski I, Irga D, Edelstein S et al (2004) Does laser irradiation effect fracture healing? Med Laser Appl 19(3):146–9

Article  Google Scholar 

Brondon P, Stadler I, Lanzafame RJ (2005) A study of the effects of phototherapy dose interval on photobiomodulation of cell cultures. Lasers Surg Med 36(5):409–413

Article  PubMed  Google Scholar 

Cronshaw M, Parker S, Anagnostaki E et al (2020) Photobiomodulation dose parameters in dentistry: a systematic review and meta-analysis. Dentistry Journal 8(4):114

Article  PubMed  PubMed Central  Google Scholar 

Çevik ZBY, Karaman O, Topaloğlu N (2023) Photobiomodulation therapy at red and near-infrared wavelengths for osteogenic differentiation in the scaffold-free microtissues. J Photochem Photobiol, B 238:112615

Article  Google Scholar 

Onak G, Şen M, Horzum N et al (2018) Aspartic and glutamic acid templated peptides conjugation on plasma modified nanofibers for osteogenic differentiation of human mesenchymal stem cells: a comparative study. Sci Rep 8(1):17620-

Article  PubMed  PubMed Central  Google Scholar 

Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333

Article  CAS  PubMed  Google Scholar 

Topaloglu N, Bakay E (2022) Mechanistic approaches to the light-induced neural cell differentiation: Photobiomodulation vs Low-Dose Photodynamic Therapy. Photodiagnosis Photodyn Ther 37:102702

Article  CAS  PubMed  Google Scholar 

Negri LB, Martins TJ, da Silva RS et al (2019) Photobiomodulation combined with photodynamic therapy using ruthenium phthalocyanine complexes in A375 melanoma cells: effects of nitric oxide generation and ATP production. J Photochem Photobiol, B 198:111564

Article  CAS  PubMed  Google Scholar 

Crous A, Jansen van Rensburg M, Abrahamse H (2022) Single and consecutive application of near-infrared and green irradiation modulates adipose derived stem cell proliferation and affect differentiation factors. Biochimie 196:225–33

Article  CAS  PubMed  Google Scholar 

Gerdes S, Mostafavi A, Ramesh S et al (2020) Process-structure-quality relationships of three-dimensional printed poly(caprolactone)-hydroxyapatite scaffolds. Tissue Eng Part A 26(5–6):279–91

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zecha JA, Raber-Durlacher JE, Nair RG et al (2016) Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer: Off J Multinatl Assoc Support Care Cancer 24(6):2781–92

Article  Google Scholar 

Amaroli A, Ravera S, Parker S et al (2016) An 808-nm diode laser with a flat-top handpiece positively photobiomodulates mitochondria activities. Photomed Laser Surg 34(11):564–571

Article  CAS  PubMed  Google Scholar 

Stamborowski SF, de Oliveira SBM, Lima FPS et al (2021) The influence of photobiomodulation on the temperature of the brachial biceps during muscle fatigue protocol. Lasers Med Sci 36(8):1741–9

Article  PubMed  Google Scholar 

Wang X, Wanniarachchi H, Wu A et al (2021) Transcranial photobiomodulation and thermal stimulation induce distinct topographies of EEG alpha and beta power changes in healthy humans. Sci Rep 11(1):18917-

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borciani G, Montalbano G, Baldini N et al (2022) Protocol of co-culture of human osteoblasts and osteoclasts to test biomaterials for bone tissue engineering. Methods Protoc 5(1):8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvalho MS, Silva JC, Udangawa RN et al (2019) Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Mater Sci Eng, C 99:479–490

Article  CAS  Google Scholar 

Tuby H, Hertzberg E, Maltz L et al (2013) Long-term safety of low-level laser therapy at different power densities and single or multiple applications to the bone marrow in mice. Photomed Laser Surg 31(6):269–273

Article  PubMed  Google Scholar 

Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23(12):120901

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanzafame RJ, Stadler I, Kurtz AF et al (2007) Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med 39(6):534–542

Article  PubMed  Google Scholar 

Al-Watban FA, Zhang X et al (2004) The comparison of effects between pulsed and CW lasers on wound healing. J Clin Laser Med Surg 22(1):15–18

Article  PubMed  Google Scholar 

Mokoena DR, Houreld NN, Dhilip Kumar SS et al (2020) Photobiomodulation at 660 nm stimulates fibroblast differentiation. Lasers Surg Med 52(7):671–681

Article  PubMed  Google Scholar 

Abdalla M, Nagy A, Ye WN et al (2012) Overview of photo-induced therapy for ATP production. Photonics North 8412. SPIE 2012:27–33

留言 (0)

沒有登入
gif