Comprehensive clinicopathological significance and putative transcriptional mechanisms of Forkhead box M1 factor in hepatocellular carcinoma

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

Chan LK, Tsui YM, Ho DW, Ng IO. Cellular heterogeneity and plasticity in liver cancer. Semin Cancer Biol. 2022;82:134–49.

Article  PubMed  CAS  Google Scholar 

Bzeizi KI, Abdullah M, Vidyasagar K, Alqahthani SA, Broering D. Hepatocellular carcinoma recurrence and mortality rate post liver transplantation: meta-analysis and systematic review of real-world evidence. Cancers. 2022;14(20):5114.

Ilaslan E, Kwiatkowska K, Smialek MJ, Sajek MP, Lemanska Z, Alla M, et al. Distinct roles of NANOS1 and NANOS3 in the cell cycle and NANOS3-PUM1-FOXM1 axis to control G2/M phase in a human primordial germ cell model. Int J Mol Sci. 2022;23(12):6592.

Zheng Q, Luo Z, Xu M, Ye S, Lei Y, Xi Y. HMGA1 and FOXM1 cooperate to promote G2/M cell cycle progression in cancer cells. Life (Basel, Switzerland). 2023;13(5):1225.

Wang WD, Shang Y, Wang C, Ni J, Wang AM, Li GJ, et al. c-FLIP promotes drug resistance in non-small-cell lung cancer cells via upregulating FoxM1 expression. Acta Pharmacol Sin. 2022;43(11):2956–66.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li X, Liu W, Tao W. LINC00174 promotes cell proliferation and metastasis in renal clear cell carcinoma by regulating miR-612/FOXM1 axis. Immunopharmacol Immunotoxicol. 2022;44(5):746–56.

Article  PubMed  CAS  Google Scholar 

Oturkar CC, Gandhi N, Rao P, Eng KH, Miller A, Singh PK, et al. Estrogen receptor-Beta2 (ERβ2)-mutant p53-FOXM1 axis: a novel driver of proliferation, chemoresistance, and disease progression in High Grade Serous Ovarian Cancer (HGSOC). Cancers. 2022;14(5):1120.

Kopanja D, Chand V, O’Brien E, Mukhopadhyay NK, Zappia MP, Islam A, et al. Transcriptional repression by FoxM1 suppresses tumor differentiation and promotes metastasis of breast cancer. Can Res. 2022;82(13):2458–71.

Article  CAS  Google Scholar 

Liu J, Li J, Wang K, Liu H, Sun J, Zhao X, et al. Aberrantly high activation of a FoxM1-STMN1 axis contributes to progression and tumorigenesis in FoxM1-driven cancers. Signal Transduct Target Ther. 2021;6(1):42.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li R, Okada H, Yamashita T, Nio K, Chen H, Li Y, et al. FOXM1 is a novel molecular target of AFP-positive hepatocellular carcinoma abrogated by proteasome inhibition. Int J Mol Sci. 2022;23(15):8305.

Borhani S, Gartel AL. FOXM1: a potential therapeutic target in human solid cancers. Expert Opin Ther Targets. 2020;24(3):205–17.

Article  PubMed  CAS  Google Scholar 

Zhi Y, Abudoureyimu M, Zhou H, Wang T, Feng B, Wang R, et al. FOXM1-mediated LINC-ROR regulates the proliferation and sensitivity to sorafenib in hepatocellular carcinoma. Mol Therap Nucleic Acids. 2019;16:576–88.

Article  CAS  Google Scholar 

He R-Q, Li J-D, He W-Y, Chen G, Huang Z-G, Li M-F, et al. Prognosis prediction ability and prospective biological mechanisms of WDHD1 in hepatocellular carcinoma tissues. Electron J Biotechnol. 2022;55:78–90.

Article  CAS  Google Scholar 

He RQ, Li JD, Du XF, Dang YW, Yang LJ, Huang ZG, et al. LPCAT1 overexpression promotes the progression of hepatocellular carcinoma. Cancer Cell Int. 2021;21(1):442.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell. 2019;36(4):418-30.e6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Meng FD, Wei JC, Qu K, Wang ZX, Wu QF, Tai MH, et al. FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. World J Gastroenterol. 2015;21(1):196–213.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xia L, Mo P, Huang W, Zhang L, Wang Y, Zhu H, et al. The TNF-α/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis. 2012;33(11):2250–9.

Article  PubMed  CAS  Google Scholar 

Bai L, Ren Y, Cui T. Overexpression of CDCA5, KIF4A, TPX2, and FOXM1 coregulated cell cycle and promoted hepatocellular carcinoma development. J Comput Biol. 2020;27(6):965–74.

Article  PubMed  CAS  Google Scholar 

Wei Y, Wang Z, Zong Y, Deng D, Chen P, Lu J. LncRNA MFI2-AS1 promotes HCC progression and metastasis by acting as a competing endogenous RNA of miR-134 to upregulate FOXM1 expression. Biomed Pharmacotherap. 2020;125:109890.

Wierstra I, Alves J. FOXM1, a typical proliferation-associated transcription factor. Biol Chem. 2007;388(12):1257–74.

Article  PubMed  CAS  Google Scholar 

Liang C, Zhao J, Ge H, Li G, Wu J. Clinicopathological and prognostic significance of FoxM1 in hepatocellular carcinoma patients: a meta-analysis. Onco Targets Ther. 2018;11:3561–71.

Article  PubMed  PubMed Central  Google Scholar 

Song BN, Chu IS. A gene expression signature of FOXM1 predicts the prognosis of hepatocellular carcinoma. Exp Mol Med. 2018;50(1): e418.

Article  PubMed  PubMed Central  Google Scholar 

Dai J, Yang L, Wang J, Xiao Y, Ruan Q. Prognostic value of FOXM1 in patients with malignant solid tumor: a meta-analysis and system review. Dis Markers. 2015;2015: 352478.

Article  PubMed  PubMed Central  Google Scholar 

Lee HA, Chu KB, Moon EK, Kim SS, Quan FS. Sensitization to oxidative stress and G2/M cell cycle arrest by histone deacetylase inhibition in hepatocellular carcinoma cells. Free Radical Biol Med. 2020;147:129–38.

Article  CAS  Google Scholar 

Fischer M, Schade AE, Branigan TB, Müller GA, DeCaprio JA. Coordinating gene expression during the cell cycle. Trends Biochem Sci. 2022;47(12):1009–22.

Article  PubMed  CAS  Google Scholar 

Calderon MJ, Ploegman AG, Bailey B, Jung DO, Navratil AM, Ellsworth BS. Loss of Foxm1 results in reduced somatotrope cell number during mouse embryogenesis. PLoS One. 2015;10(6):e0128942.

Article  PubMed  PubMed Central  Google Scholar 

Yao S, Fan LY, Lam EW. The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol. 2018;50:77–89.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Park J, Kwon MS, Kim EE, Lee H, Song EJ. USP35 regulates mitotic progression by modulating the stability of Aurora B. Nat Commun. 2018;9(1):688.

Article  PubMed  PubMed Central  Google Scholar 

Zheng Y, Guo J, Zhou J, Lu J, Chen Q, Zhang C, et al. FoxM1 transactivates PTTG1 and promotes colorectal cancer cell migration and invasion. BMC Med Genomics. 2015;8:49.

Article  PubMed  PubMed Central  Google Scholar 

Wang B, Ma A, Zhang L, Jin WL, Qian Y, Xu G, et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun. 2015;6:8704.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jang WD, Lee MY, Mun J, Lim G, Oh KS. CDI exerts anti-tumor effects by blocking the FoxM1-DNA interaction. Biomedicines. 2022;10(7):1671.

He C, Jaffar Ali D, Qi Y, Li Y, Sun B, Liu R, et al. Engineered extracellular vesicles mediated CRISPR-induced deficiency of IQGAP1/FOXM1 reverses sorafenib resistance in HCC by suppressing cancer stem cells. J Nanobiotechnol. 2023;21(1):154.

Article  CAS  Google Scholar 

Huang C, Luo H, Huang Y, Fang C, Zhao L, Li P, et al. AURKB, CHEK1 and NEK2 as the potential target proteins of scutellaria barbata on hepatocellular carcinoma: an integrated bioinformatics analysis. Int J Gen Med. 2021;14:3295–312.

Article  PubMed  PubMed Central  Google Scholar 

Cavallaro G, Farra R, Craparo EF, Sardo C, Porsio B, Giammona G, et al. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. Int J Pharm. 2017;525(2):397–406.

Article  PubMed  CAS  Google Scholar 

Jo H, Shim K, Kim HU, Jung HS, Jeoung D. HDAC2 as a target for developing anti-cancer drugs. Comput Struct Biotechnol J. 2023;21:2048–57.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Alshahrani MY, Alshahrani KM, Tasleem M, Akeel A, Almeleebia TM, Ahmad I, et al. Computational screening of natural compounds for identification of potential anti-cancer agents targeting MCM7 protein. Molecules. 2021;26(19):5878.

Chen PY, Tien HJ, Chen SF, Horng CT, Tang HL, Jung HL, et al. Response of myeloid leukemia cells to luteolin is modulated by differentially expressed pituitary tumor-transforming gene 1 (PTTG1) oncoprotein. Int J Mol Sci. 2018;19(4):1173.

Comments (0)

No login
gif