Molecular complexity of diffuse large B-cell lymphoma: a molecular perspective and therapeutic implications

Agarwal P, Kabir FM, DeInnocentes P, Bird RC (2012) Tumor suppressor gene p16/INK4A/CDKN2A and its role in cell cycle exit, differentiation, and determination of cell fate. Tumor Suppressor Genes 3(10):27882

Google Scholar 

Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E et al (2022) The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 5th ed. 36(7):1720–48. https://doi.org/10.1038/s41375-022-01620-2

Andersen CL, Asmar F, Klausen T, Hasselbalch H, Grønbæk KJLRR (2012) Somatic mutations of the crebbp and EP300 genes affect response to histone deacetylase inhibition in malignant DLBCL clones. Leuk Res Rep 2(1):1–3. https://doi.org/10.1016/j.lrr.2012.10.002

Article  PubMed  PubMed Central  Google Scholar 

Bakhshi TJ, Georgel PT (2020) Genetic and epigenetic determinants of diffuse large B-cell lymphoma. Blood Cancer J 10(12):123. https://doi.org/10.1038/s41408-020-00389-w

Article  PubMed  PubMed Central  Google Scholar 

Basso K, Dalla-Favera RNRI (2015) Germinal centres and B cell lymphomagenesis. Nat Rev Immunol 15(3):172–84. https://doi.org/10.1038/nri3814

Article  PubMed  CAS  Google Scholar 

Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11(10):726–734. https://doi.org/10.1038/nrc3130

Bedsaul JR, Carter NM, Deibel KE, Hutcherson SM, Jones TA, Wang Z, Yang C, Yang YK, Pomerantz JL (2018) Mechanisms of regulated and dysregulated CARD11 signaling in adaptive immunity and disease. Front Immunol 9:2105

Article  PubMed  PubMed Central  Google Scholar 

Béguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M et al (2013) EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23(5):677–692. https://doi.org/10.1016/j.ccr.2013.04.011

Article  PubMed  PubMed Central  CAS  Google Scholar 

Berendsen MR, Stevens WBC, van den Brand M, van Krieken JH, Scheijen BJC (2020) Molecular genetics of relapsed diffuse large B-cell lymphoma: insight into mechanisms of therapy resistance. Cancers (basel) 12(12):3553. https://doi.org/10.3390/cancers12123553

Article  PubMed  CAS  Google Scholar 

Bohers E, Mareschal S, Bouzelfen A, Marchand V, Ruminy P, Maingonnat C, Ménard AL, Etancelin P, Bertrand P, Dubois S, Alcantara M (2014) Targetable activating mutations are very frequent in GCB and ABC diffuse large B-cell lymphoma. Genes Chromosom Cancer 53(2):144–53

Article  PubMed  CAS  Google Scholar 

Borghesi L, Milcarek C (2006) From B cell to plasma cell: regulation of V (D) J recombination and antibody secretion. Immunol Res 36:27–32

Article  PubMed  CAS  Google Scholar 

Burger JA, Wiestner A (2018) Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer 18(3):148–167. https://doi.org/10.1038/nrc.2017.121

Article  PubMed  CAS  Google Scholar 

Burrows PD, Cooper MD (1997) B cell development and differentiation. Curr Opin Immunol 9(2):239–44

Article  PubMed  CAS  Google Scholar 

Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood J Am Soc Hematol 117(19):5019–32. https://doi.org/10.1182/blood-2011-01-293050

Article  CAS  Google Scholar 

Chambwe N, Kormaksson M, Geng H, De S, Michor F, Johnson NA et al (2014) Variability in DNA methylation defines novel epigenetic subgroups of DLBCL associated with different clinical outcomes. Blood J Am Soc Hematol 123(11):1699–1708

CAS  Google Scholar 

Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114(13):2363–73. https://doi.org/10.1242/jcs.114.13.2363

Article  PubMed  CAS  Google Scholar 

Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA et al (2018) Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 24(5):679–690. https://doi.org/10.1038/s41591-018-0016-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, Lawrence MS, Roemer MG, Li AJ, Ziepert M, Staiger AM (2018) Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 24(5):679–90. https://doi.org/10.1038/s41591-018-0016-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen H, Liu H, Qing G (2018) Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther 3(1):5

Article  PubMed  PubMed Central  Google Scholar 

Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–7. https://doi.org/10.1093/bioinformatics/btv195

Article  PubMed  PubMed Central  CAS  Google Scholar 

Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012). Predicting the functional effect of amino acid substitutions and indels. https://doi.org/10.1371/journal.pone.0046688

Article  Google Scholar 

Choi Y (2012) A fast computation of pairwise sequence alignment scores between a protein and a set of single-locus variants of another protein. In: Proceedings of the A.C.M. conference on bioinformatics, computational biology and biomedicine (414–7). https://doi.org/10.1145/2382936.2382989

Clozel T, Yang S, Elstrom R.L (2017) Epigenetic alterations in B-cell non-Hodgkin lymphoma. Front Genet 8:69

Google Scholar 

Compagno M et al (2009) Mutations of multiple genes cause deregulation of NF-B in diffuse large B-cell lymphoma. Nature 459(7247):717–21. https://doi.org/10.1038/nature07968

Article  PubMed  PubMed Central  CAS  Google Scholar 

Coupland S (2013) Molecular pathology of lymphoma. Eye 27:180–189. https://doi.org/10.1038/eye.2012.247

Crump NT, Milne TA (2019) Why are so many MLL lysine methyltransferases required for normal mammalian development? Cell Mol Life Sci 76:2885–98

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cucco F, Barrans S, Sha C, Clipson A, Crouch S, Dobson R et al (2020) Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC/BCL2 double-hit. Leukemia 34(5):1329–1341. https://doi.org/10.1038/s41375-019-0691-6

Article  PubMed  CAS  Google Scholar 

Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463(7277):88–92. https://doi.org/10.1038/nature08638

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. https://doi.org/10.1016/j.cell.2012.06.013

de Barrios O, Meler A, Parra M (2020) MYC’s fine line between B cell development and malignancy. Cells 9(2):523. https://doi.org/10.3390/cells9020523

Article  PubMed  PubMed Central  CAS  Google Scholar 

de Groen RAL, Schrader AMR, Kersten MJ, Pals ST, Vermaat JSP (2019) MYD88 in the driver’s seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications. Haematologica 104(12):2337–2348. https://doi.org/10.3324/haematol.2019.227272

Article  PubMed  PubMed Central  CAS  Google Scholar 

Deguine J, Barton GM (2014) MyD88: a central player in innate immune signaling. F1000prime Rep 6:97. https://doi.org/10.12703/P6-97

Article  PubMed  PubMed Central  Google Scholar 

Duan R, Du W, Guo W (2020) EZH2: a novel target for cancer treatment. J Hematol Oncol 13(1):104. https://doi.org/10.1186/s13045-020-00937-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dunleavy K, Erdmann T, Lenz G (2018) Targeting the B-cell receptor pathway in diffuse large B-cell lymphoma. Cancer Treat Rev 1(65):41–46. https://doi.org/10.1016/j.ctrv.2018.01.002

Article  CAS  Google Scholar 

Dutto I, Scalera C, Prosperi E (2018) CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Mol Life Sci 75:1325–38

Article  PubMed  CAS  Google Scholar 

Dylke J, Lopes J, Dang-Lawson M, Machtaler S, Matsuuchi L (2007) Role of the extracellular and transmembrane domain of Igα/β in assembly of the B cell antigen receptor (BCR). Immunol Lett 112(1):47–57. https://doi.org/10.1016/j.imlet.2007.06.005

Article  PubMed  CAS  Google Scholar 

Elbadawy M, Usui T, Yamawaki H, Sasaki K (2019) Emerging roles of C-Myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: a potential therapeutic target against colorectal cancer. Int J Mol Sci 20(9):2340. https://doi.org/10.3390/ijms20092340

Article  PubMed  PubMed Central  CAS  Google Scholar 

Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21(35):5427–5440. https://doi.org/10.1038/sj.onc.1205600

Article  PubMed  CAS  Google Scholar 

Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW (2010) CO

留言 (0)

沒有登入
gif