A case–control comparison of acute-phase peripheral blood gene expression in participants diagnosed with minor ischaemic stroke or stroke mimics

Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, Abbasifard M, Abbasi-Kangevari M, Abd-Allah F, Abedi V, Abualhasan A. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820.

Article  CAS  Google Scholar 

Dewdney B, et al. Circulating MicroRNAs as biomarkers for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis. 2018;27(3):522–30.

Article  PubMed  Google Scholar 

Barrera-Vázquez OS, et al. Structural and pharmacological network analysis of mirnas involved in acute ischemic stroke: a systematic review. Int J Mol Sci. 2022;23(9):4663.

Article  PubMed  PubMed Central  Google Scholar 

Neag MA, et al. miRNA involvement in cerebral ischemia-reperfusion injury. Front Neurosci. 2022;16:901360.

Article  PubMed  PubMed Central  Google Scholar 

Aldous EK, et al. Identification of novel circulating miRNAs in patients with acute ischemic stroke. Int J Mol Sci. 2022;23(6):3387.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carmona-Mora P, et al. Monocyte, neutrophil, and whole blood transcriptome dynamics following ischemic stroke. BMC Med. 2023;21(1):65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tiedt S, et al. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res. 2017;121(8):970–80.

Article  CAS  PubMed  Google Scholar 

Zhu W, et al. LncRNA expression profiling of ischemic stroke during the transition from the acute to subacute stage. Front Neurol. 2019;10:36.

Article  PubMed  PubMed Central  Google Scholar 

Meller R, et al. Blood transcriptome changes after stroke in an African American population. Ann Clin Transl Neurol. 2016;3(2):70–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dykstra-Aiello C, et al. Intracerebral hemorrhage and ischemic stroke of different etiologies have distinct alternatively spliced mRNA profiles in the blood: a Pilot RNA-seq study. Transl Stroke Res. 2015;6(4):284–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Navi BB, et al. Cancer-related ischemic stroke has a distinct blood mRNA expression profile. Stroke. 2019;50(11):3259–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toor SM, et al. Circulating microRNA profiling identifies distinct microRNA signatures in acute ischemic stroke and transient ischemic attack patients. Int J Mol Sci. 2022;24(1):108.

Article  PubMed  PubMed Central  Google Scholar 

Toor SM, et al. Identification of distinct circulating microRNAs in acute ischemic stroke patients with type 2 diabetes mellitus. Front Cardiovasc Med. 2022;9:1024790.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carmona-Mora P, et al. Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. J Cereb Blood Flow Metab. 2021;41(6):1398–416.

Article  CAS  PubMed  Google Scholar 

Tan JR, et al. MicroRNAs regulating cluster of differentiation 46 (CD46) in cardioembolic and non-cardioembolic stroke. PLoS ONE. 2017;12(2):e0172131.

Article  PubMed  PubMed Central  Google Scholar 

Campbell BCV, Khatri P. Stroke. Lancet. 2020;396(10244):129–42.

Article  PubMed  Google Scholar 

Zhu B, et al. MicroRNA-486-5p functions as a diagnostic marker for carotid artery stenosis and prevents endothelial dysfunction through inhibiting inflammation and oxidative stress. Bioengineered. 2022;13(4):8667–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao Y. MiR-486-5p inhibits the hyperproliferation and production of collagen in hypertrophic scar fibroblasts via IGF1/PI3K/AKT pathway. J Dermatolog Treat. 2021;32(8):973–82.

Article  CAS  PubMed  Google Scholar 

Lu Y, et al. Extracellular vesicle-enclosed miR-486-5p mediates wound healing with adipose-derived stem cells by promoting angiogenesis. J Cell Mol Med. 2020;24(17):9590–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Y, et al. MicroRNA-486-5p inhibits the growth of human hypertrophic scar fibroblasts by regulating Smad2 expression. Mol Med Rep. 2019;19(6):5203–10.

CAS  PubMed  PubMed Central  Google Scholar 

Xu L, et al. Diagnostic and prognostic value of miR-486-5p, miR-451a, miR-21-5p and monocyte to high-density lipoprotein cholesterol ratio in patients with acute myocardial infarction. Heart Vessels. 2023;38(3):318–31.

Article  PubMed  Google Scholar 

Bei Y, et al. miR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection. Mol Ther. 2022;30(4):1675–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gholaminejad A, et al. A meta-analysis of microRNA expression profiling studies in heart failure. Heart Fail Rev. 2021;26(4):997–1021.

Article  CAS  PubMed  Google Scholar 

Chen H, et al. miR-486 improves fibrotic activity in myocardial infarction by targeting SRSF3/p21-Mediated cardiac myofibroblast senescence. J Cell Mol Med. 2022;26(20):5135–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei T, et al. MicroRNA 486–3P as a stability marker in acute coronary syndrome. Biosci Rep. 2016;36(3):e00351.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang R, et al. Expression of circulating miR-486 and miR-150 in patients with acute myocardial infarction. BMC Cardiovasc Disord. 2015;15:51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pisano C, et al. Medial tunica degeneration of the ascending aortic wall is associated with specific microRNA changes in bicuspid aortic valve disease. Mol Med Rep. 2021;24(6):1–12.

Article  Google Scholar 

Xing F, et al. miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a. Exp Anim. 2021;70(1):126–36.

Article  CAS  PubMed  Google Scholar 

Liu FJ, et al. microRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS ONE. 2013;8(6):e66393.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, et al. Combined prediction of miR-210 and miR-374a for severity and prognosis of hypoxic-ischemic encephalopathy. Brain Behav. 2018;8(1):e00835.

Article  PubMed  Google Scholar 

Hassan A, et al. The 17β-estradiol induced upregulation of the adhesion G-protein coupled receptor (ADGRG7) is modulated by ESRα and SP1 complex. Biol Open. 2019;8(1):bio037390.

CAS  PubMed  Google Scholar 

Lei P, et al. A correlation study of adhesion G protein-coupled receptors as potential therapeutic targets in Uterine Corpus Endometrial cancer. Int Immunopharmacol. 2022;108:108743.

Article  CAS  PubMed  Google Scholar 

Meng D, et al. Screening the key genes of prognostic value in the microenvironment for head and neck squamous cell carcinoma. Medicine (Baltimore). 2021;100(4):e24184.

Article  CAS  PubMed  Google Scholar 

Sundbaum JK, et al. Genome-wide association study of liver enzyme elevation in rheumatoid arthritis patients starting methotrexate. Pharmacogenomics. 2021;22(15):973–82.

Article  CAS  PubMed  Google Scholar 

Liu S, et al. Construction of a combined random forest and artificial neural network diagnosis model to screening potential biomarker for hepatoblastoma. Pediatr Surg Int. 2022;38(12):2023–34.

Article  PubMed  Google Scholar 

Andreassen BU, et al. Microvillus inclusion disease caused by MYO5B: different presentation and phenotypes despite same mutation. JPGN Rep. 2023;4(2):e309.

Article  PubMed  PubMed Central  Google Scholar 

Burman A, et al. Modeling of a novel patient-based MYO5B point mutation reveals insights into MVID pathogenesis. Cell Mol Gastroenterol Hepatol. 2023;15(4):1022–6.

Article  CAS  PubMed 

Comments (0)

No login
gif