Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, Abbasifard M, Abbasi-Kangevari M, Abd-Allah F, Abedi V, Abualhasan A. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820.
Dewdney B, et al. Circulating MicroRNAs as biomarkers for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis. 2018;27(3):522–30.
Barrera-Vázquez OS, et al. Structural and pharmacological network analysis of mirnas involved in acute ischemic stroke: a systematic review. Int J Mol Sci. 2022;23(9):4663.
Article PubMed PubMed Central Google Scholar
Neag MA, et al. miRNA involvement in cerebral ischemia-reperfusion injury. Front Neurosci. 2022;16:901360.
Article PubMed PubMed Central Google Scholar
Aldous EK, et al. Identification of novel circulating miRNAs in patients with acute ischemic stroke. Int J Mol Sci. 2022;23(6):3387.
Article CAS PubMed PubMed Central Google Scholar
Carmona-Mora P, et al. Monocyte, neutrophil, and whole blood transcriptome dynamics following ischemic stroke. BMC Med. 2023;21(1):65.
Article CAS PubMed PubMed Central Google Scholar
Tiedt S, et al. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res. 2017;121(8):970–80.
Article CAS PubMed Google Scholar
Zhu W, et al. LncRNA expression profiling of ischemic stroke during the transition from the acute to subacute stage. Front Neurol. 2019;10:36.
Article PubMed PubMed Central Google Scholar
Meller R, et al. Blood transcriptome changes after stroke in an African American population. Ann Clin Transl Neurol. 2016;3(2):70–81.
Article CAS PubMed PubMed Central Google Scholar
Dykstra-Aiello C, et al. Intracerebral hemorrhage and ischemic stroke of different etiologies have distinct alternatively spliced mRNA profiles in the blood: a Pilot RNA-seq study. Transl Stroke Res. 2015;6(4):284–9.
Article CAS PubMed PubMed Central Google Scholar
Navi BB, et al. Cancer-related ischemic stroke has a distinct blood mRNA expression profile. Stroke. 2019;50(11):3259–64.
Article CAS PubMed PubMed Central Google Scholar
Toor SM, et al. Circulating microRNA profiling identifies distinct microRNA signatures in acute ischemic stroke and transient ischemic attack patients. Int J Mol Sci. 2022;24(1):108.
Article PubMed PubMed Central Google Scholar
Toor SM, et al. Identification of distinct circulating microRNAs in acute ischemic stroke patients with type 2 diabetes mellitus. Front Cardiovasc Med. 2022;9:1024790.
Article CAS PubMed PubMed Central Google Scholar
Carmona-Mora P, et al. Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. J Cereb Blood Flow Metab. 2021;41(6):1398–416.
Article CAS PubMed Google Scholar
Tan JR, et al. MicroRNAs regulating cluster of differentiation 46 (CD46) in cardioembolic and non-cardioembolic stroke. PLoS ONE. 2017;12(2):e0172131.
Article PubMed PubMed Central Google Scholar
Campbell BCV, Khatri P. Stroke. Lancet. 2020;396(10244):129–42.
Zhu B, et al. MicroRNA-486-5p functions as a diagnostic marker for carotid artery stenosis and prevents endothelial dysfunction through inhibiting inflammation and oxidative stress. Bioengineered. 2022;13(4):8667–75.
Article CAS PubMed PubMed Central Google Scholar
Xiao Y. MiR-486-5p inhibits the hyperproliferation and production of collagen in hypertrophic scar fibroblasts via IGF1/PI3K/AKT pathway. J Dermatolog Treat. 2021;32(8):973–82.
Article CAS PubMed Google Scholar
Lu Y, et al. Extracellular vesicle-enclosed miR-486-5p mediates wound healing with adipose-derived stem cells by promoting angiogenesis. J Cell Mol Med. 2020;24(17):9590–604.
Article CAS PubMed PubMed Central Google Scholar
Shi Y, et al. MicroRNA-486-5p inhibits the growth of human hypertrophic scar fibroblasts by regulating Smad2 expression. Mol Med Rep. 2019;19(6):5203–10.
CAS PubMed PubMed Central Google Scholar
Xu L, et al. Diagnostic and prognostic value of miR-486-5p, miR-451a, miR-21-5p and monocyte to high-density lipoprotein cholesterol ratio in patients with acute myocardial infarction. Heart Vessels. 2023;38(3):318–31.
Bei Y, et al. miR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection. Mol Ther. 2022;30(4):1675–91.
Article CAS PubMed PubMed Central Google Scholar
Gholaminejad A, et al. A meta-analysis of microRNA expression profiling studies in heart failure. Heart Fail Rev. 2021;26(4):997–1021.
Article CAS PubMed Google Scholar
Chen H, et al. miR-486 improves fibrotic activity in myocardial infarction by targeting SRSF3/p21-Mediated cardiac myofibroblast senescence. J Cell Mol Med. 2022;26(20):5135–49.
Article CAS PubMed PubMed Central Google Scholar
Wei T, et al. MicroRNA 486–3P as a stability marker in acute coronary syndrome. Biosci Rep. 2016;36(3):e00351.
Article CAS PubMed PubMed Central Google Scholar
Zhang R, et al. Expression of circulating miR-486 and miR-150 in patients with acute myocardial infarction. BMC Cardiovasc Disord. 2015;15:51.
Article CAS PubMed PubMed Central Google Scholar
Pisano C, et al. Medial tunica degeneration of the ascending aortic wall is associated with specific microRNA changes in bicuspid aortic valve disease. Mol Med Rep. 2021;24(6):1–12.
Xing F, et al. miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a. Exp Anim. 2021;70(1):126–36.
Article CAS PubMed Google Scholar
Liu FJ, et al. microRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS ONE. 2013;8(6):e66393.
Article CAS PubMed PubMed Central Google Scholar
Wang Z, et al. Combined prediction of miR-210 and miR-374a for severity and prognosis of hypoxic-ischemic encephalopathy. Brain Behav. 2018;8(1):e00835.
Hassan A, et al. The 17β-estradiol induced upregulation of the adhesion G-protein coupled receptor (ADGRG7) is modulated by ESRα and SP1 complex. Biol Open. 2019;8(1):bio037390.
Lei P, et al. A correlation study of adhesion G protein-coupled receptors as potential therapeutic targets in Uterine Corpus Endometrial cancer. Int Immunopharmacol. 2022;108:108743.
Article CAS PubMed Google Scholar
Meng D, et al. Screening the key genes of prognostic value in the microenvironment for head and neck squamous cell carcinoma. Medicine (Baltimore). 2021;100(4):e24184.
Article CAS PubMed Google Scholar
Sundbaum JK, et al. Genome-wide association study of liver enzyme elevation in rheumatoid arthritis patients starting methotrexate. Pharmacogenomics. 2021;22(15):973–82.
Article CAS PubMed Google Scholar
Liu S, et al. Construction of a combined random forest and artificial neural network diagnosis model to screening potential biomarker for hepatoblastoma. Pediatr Surg Int. 2022;38(12):2023–34.
Andreassen BU, et al. Microvillus inclusion disease caused by MYO5B: different presentation and phenotypes despite same mutation. JPGN Rep. 2023;4(2):e309.
Article PubMed PubMed Central Google Scholar
Burman A, et al. Modeling of a novel patient-based MYO5B point mutation reveals insights into MVID pathogenesis. Cell Mol Gastroenterol Hepatol. 2023;15(4):1022–6.
Comments (0)