Gold nanoparticles conjugated with epidermal growth factor and gadolinium for precision delivery of contrast agents in magnetic resonance imaging

Guo C, Hu J, Bains A, Pan D, Luo K, Li N, et al. The potential of peptide dendron functionalized and gadolinium loaded mesoporous silica nanoparticles as magnetic resonance imaging contrast agents. J Mater Chem B [Internet]. 2016;4:2322–31. Available from: http://xlink.rsc.org/?DOI=C5TB02709H.

Clough TJ, Jiang L, Wong K-L, Long NJ. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat Commun [Internet]. 2019;10:1420. Available from: http://www.nature.com/articles/s41467-019-09342-3.

Le Fur M, Caravan P. The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics. 2019;11:240–54. Available from: https://academic.oup.com/metallomics/article/11/2/240-254/5957487.

Marangoni VS, Germano LD, Silva CCC, de Souza EA, Maroneze CM. Engineering two-dimensional gold nanostructures using graphene oxide nanosheets as a template. Nanoscale. 2018;10:13315–9. Available from: http://xlink.rsc.org/?DOI=C8NR02855A.

Sinha S, Tong WY, Williamson NH, McInnes SJP, Puttick S, Cifuentes-Rius A, et al. Novel Gd-loaded silicon nanohybrid: a potential epidermal growth factor receptor expressing cancer cell targeting magnetic resonance imaging contrast agent. ACS Appl Mater Interfaces. 2017;9:42601–11. https://doi.org/10.1021/acsami.7b14538.

Article  CAS  PubMed  Google Scholar 

Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2019;119:957–1057. https://doi.org/10.1021/acs.chemrev.8b00363.

Article  CAS  PubMed  Google Scholar 

Silva F, Cabral Campello MP, Paulo A. radiolabeled gold nanoparticles for imaging and therapy of cancer. Materials (Basel) [Internet]. 2020;14:4. Available from: https://www.mdpi.com/1996-1944/14/1/4.

Coughlin AJ, West JL. Targeting gold nanoparticles for cancer diagnostics and therapeutics. ACS Symp Ser. 2012. https://doi.org/10.1021/bk-2012-1113.ch003.

Article  Google Scholar 

Zhan C, Huang Y, Lin G, Huang S, Zeng F, Wu S. A gold nanocage/cluster hybrid structure for whole-body multispectral optoacoustic tomography imaging, EGFR inhibitor delivery, and photothermal therapy. Small. 2019;15:1900309. https://doi.org/10.1002/smll.201900309.

Article  CAS  Google Scholar 

Castilho ML, Hewitt KC, Raniero L. FT-IR characterization of a theranostic nanoprobe for photodynamic therapy and epidermal growth factor receptor targets. Sensors Actuators B Chem. 2017;240:903–8.

Article  CAS  Google Scholar 

Castilho ML, Jesus VPS, Vieira PFA, Hewitt KC, Raniero L. Chlorin e6-EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer. Photodiagn Photodyn Ther. 2021;33:102186.

Article  CAS  Google Scholar 

Lucas LJ, Hewitt KC. Nanobiophotonics for molecular imaging of cancer: Au- and Ag-based epidermal growth factor receptor (EGFR) specific nanoprobes. In: Vo-Dinh T, Lakowicz JR, editors. Proc Plasmon Biol Med IX [Internet]. SPIE; 2012. p. 82340C. https://doi.org/10.1117/12.906794.

Lucas LJ, Tellez C, Castilho ML, Lee CLD, Hupman MA, Vieira LS, et al. Development of a sensitive, stable and EGFR-specific molecular imaging agent for surface enhanced Raman spectroscopy. J Raman Spectrosc. 2015;46:434–46. https://doi.org/10.1002/jrs.4678.

Article  CAS  Google Scholar 

Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86:3391–5. https://doi.org/10.1021/j100214a025.

Article  CAS  Google Scholar 

Vieira L, Castilho ML, Ferreira I, Ferreira-Strixino J, Hewitt KC, Raniero L. Synthesis and characterization of gold nanostructured Chorin e6 for photodynamic therapy. Photodiagnosis Photodyn Ther. 2017;18:6–11.

Article  CAS  PubMed  Google Scholar 

Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40:715–24.

Article  PubMed  Google Scholar 

Abidi N, Cabrales L, Hequet E. Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose. 2010;17:309–20. https://doi.org/10.1007/s10570-009-9366-1.

Article  CAS  Google Scholar 

Rajkumar K, Muthukumar M, Mangalaraja RV. Electrochemical degradation of C.I. reactive orange 107 using gadolinium (Gd3+), neodymium (Nd3+) and samarium (Sm3+) doped cerium oxide nanoparticles. Int J Ind Chem. 2015;6:285–95. https://doi.org/10.1007/s40090-015-0051-y.

Article  CAS  Google Scholar 

Zhang L, Liu T, Xiao Y, Yu D, Zhang N. Hyaluronic acid-chitosan nanoparticles to deliver Gd-DTPA for MR cancer imaging. Nanomaterials. 2015;5:1379–96. Available from: https://www.mdpi.com/journal/nanomaterials.

Bhattacharjee TT, Castilho ML, de Oliveira IR, Jesus VPS, Hewitt KC, Raniero L. FTIR study of secondary structure changes in epidermal growth factor by gold nanoparticle conjugation. Biochim Biophys Acta Gen Subj. 2018;1862:495–500.

Article  CAS  PubMed  Google Scholar 

Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. 7th ed. Rio de Janeiro: LTC; 2007.

Google Scholar 

Coates J. Interpretation of infrared spectra, a practical approach. In: Meyer RA, editor. Encycl. of analytical chem. Wiley: New York; 2006. p. 10815–37.

Google Scholar 

Wan F, Wang L, Xu W, Li C, Li Y, Zhang C, et al. Binuclear gadolinium(III) complex based on DTPA and 1,3-bis(4-aminophenyl)adamantane as a high-relaxivity MRI contrast agent. Polyhedron. 2018;145:141–6. https://doi.org/10.1016/j.poly.2018.01.032.

Article  CAS  Google Scholar 

Gao S, George SJ, Zhou Z-H. Interaction of Gd-DTPA with phosphate and phosphite: toward the reaction intermediate in nephrogenic systemic fibrosis. Dalton Trans [Internet]. 2016;45:5388–94. Available from: http://xlink.rsc.org/?DOI=C5DT04172D.

Tavakkoli Yaraki M, Tayebi M, Ahmadieh M, Tahriri M, Vashaee D, Tayebi L. Synthesis and optical properties of cysteamine-capped ZnS quantum dots for aflatoxin quantification. J Alloys Compd. 2017;690:749–58.

Article  CAS  Google Scholar 

Rozenberg M, Lansky S, Shoham Y, Shoham G. Spectroscopic FTIR and NMR study of the interactions of sugars with proteins. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;222:116861.

Article  CAS  Google Scholar 

Smith B. Infrared Spect Interpret [Internet]. 1998. Available from: https://www.taylorfrancis.com/books/9781351438384.

Sakellari GI, Hondow N, Gardiner PHE. Factors influencing the surface functionalization of citrate stabilized gold nanoparticles with cysteamine, 3-mercaptopropionic acid or l-selenocystine for sensor applications. Chemosensors [Internet]. 2020;8:80. Available from: https://www.mdpi.com/2227-9040/8/3/80.

Fagundes J, Castilho ML, Téllez Soto CA, Vieira LDS, Canevari RA, Fávero PP, et al. Ribosomal DNA nanoprobes studied by Fourier transform infrared spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;118:28–35.

Article  CAS  Google Scholar 

Kumar S, Meena VK, Hazari PP, Sharma SK, Sharma RK. Rose Bengal attached and dextran coated gadolinium oxide nanoparticles for potential diagnostic imaging applications. Eur J Pharm Sci. 2018;117:362–70.

Article  CAS  PubMed  Google Scholar 

Fauzia RP, Mutalib A, Soedjanaatmadja RUMS, Bahti HH, Anggraeni A, Gunawan AH, et al. Synthesis and characterization of gadolinium diethylenetriamine pentaacetate-folate. Procedia Chem. 2015;17:139–46.

Article  CAS  Google Scholar 

Zhou W, Shen J, Lin J, An M, An L, Tian Q, et al. Zeolitic imidazolate framework nanoparticles loaded with gadolinium chelate as efficient T1 MRI contrast agent. J Mater Sci. 2021;56:7386–96. https://doi.org/10.1007/s10853-020-05647-7.

Article  CAS  Google Scholar 

Lu R, Zhang Y, Tao H, Zhou L, Li H, Chen T, et al. Gadolinium-hyaluronic acid nanoparticles as an efficient and safe magnetic resonance imaging contrast agent for articular cartilage injury detection. Bioact Mater. 2020;5:758–67.

PubMed  PubMed Central  Google Scholar 

Li K, Wen, Larson AC, Zhang Z, Shen, Chen, et al. Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer. Int J Nanomedicine [Internet]. 2013;8:2589. Available from: http://www.dovepress.com/multifunctional-dendrimer-based-nanoparticles-for-in-vivo-mrct-dual-mo-peer-reviewed-article-IJN.

Dutra BG, Bauab T Jr. MEIOS DE CONTRASTE Conceitos e diretrizes. In: Garbugio Dutra B, Bauab T Jr, editors. MEIOS CONTRASTE Conceitos e diretrizes. São Caetano do Sul. São Paulo: Farol Editora; 2022. https://doi.org/10.46664/meios-de-contraste.

Chapter  Google Scholar 

Mazzola AA, Stieven KI, Neto GH, Cardoso GDM. Segurança em Imagem por Ressonância Magnética. Rev Bras Física Médica [Internet]. 2019;13:76. Available from: http://www.rbfm.org.br/rbfm/article/view/519.

Sherry AD, Wu Y. The importance of water exchange rates in the design of responsive agents for MRI. Curr Opin Chem Biol. 2013;17:167–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira MF, Mousavi B, Ferreira PM, Martins CIO, Helm L, Martins JA, et al. Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI. Dalt Trans. 2012;41:5472–5.

Article  CAS  Google Scholar 

Costelloe CM, Amini B, Madewell JE. Risks and benefits of gadolinium-based contrast-enhanced MRI. Semin Ultrasound CT MRI. 2020;41:170–82.

Article  Google Scholar 

Heydarnezhadi S, Riahi Alam N, Haghgoo S, Ghanaati H, Khoobi M, Gorji E, et al. Glycosylated gadolinium as potential metabolic contrast agent vs Gd-DTPA for metabolism of tumor tissue in magnetic resonance imaging. Appl Magn Reson. 2016;47:375–85.

Article  CAS  Google Scholar 

da Silva YLP, Costa RZV, Pinho KEP, Ferreira RR, Schuindt SM. Effects of iodinated contrast agent, xylocaine and gadolinium concentration on the signal emitted in magnetic resonance arthrography: a samples study. Radiol Bras [Internet]. 2015;48:69–73. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842015000200005&lng=en&tlng=en.

Wei Z, Ma Y-J, Jang H, Yang W, Du J. To measure T1 of short T2 species using an inversion recovery prepared three-dimensional ultrashort echo time (3D IR-UTE) method: a phantom study. J Magn Reson. 2020;314:106725.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mundim JS, Lorena SDC, Abensur H, Elias RM, Moysés RMA, de Castro MCM, et al. Fibrose sistêmica nefrogênica: Uma complicação grave do uso do gadolínio em pacientes com insuficiência renal. Rev Assoc Med Bras. 2009;55:220–5.

Article  PubMed  Google Scholar 

Runge VM. Safety of the gadolinium-based contrast agents for magnetic resonance imaging, focusing in part on their accumulation in the brain and especially the dentate nucleus. Invest Radiol. 2016;51:273–9.

Article  CAS  PubMed  Google Scholar 

Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009;30:5737–50.

Article  CAS  PubMed  Google Scholar 

Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano. 2011;5:7124–9. https://doi.org/10.1021/nn201822b.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif