A PEDOT-Pt-TiO2 hybrid material synthesized by the casting method for photocatalytic hydrogen generation

This study describes the synthesis and characterisation of a hybrid material consisting of titanium dioxide nanotube arrays (TiO2 NTs) modified by platinum nanoparticles (Pt-TiO2 NTs) via radiolysis and a conductive poly(3,4-ethylenedioxythiophene) (PEDOT) layer, for the first time. The NTs were fabricated by a two-step anodic oxidation process and exhibited different morphologies using electrolyte solutions with different water contents (2–10 vol%). The polymer layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) was coated on the Pt-TiO2 scaffold using the casting method. The PEDOT:PSS-PT-TiO2 NTs exhibited stability in the photocatalytic process after additional calcination which was carried out to remove the PSS part; the nanotubes with lengths of ∼3 μm exhibited the highest photocatalytic activity (∼4.5 × 10−3μmol cm−2 of H2). Additionally, the samples obtained from electrolyte solutions containing 5 and 10 vol% water exhibited nanostructures with the highest catalytic activity.

留言 (0)

沒有登入
gif