Locally advanced squamous cervical carcinoma (M0): management and emerging therapeutic options in the precision radiotherapy era

Arbyn M et al. Worldwide burden of cervical cancer in 2008, Ann Oncol 22, fasc. 12: 2675–2686, dic. 2011, https://doi.org/10.1093/annonc/mdr015.

Bhatla N et al. Revised FIGO staging for carcinoma of the cervix uteri, Int J Gynecol Obstet., 145, fasc. 1, 129–135, apr. 2019, https://doi.org/10.1002/ijgo.12749.

Mahmoud O, Kilic S, Khan AJ, Beriwal S, e W. J. Small. External beam techniques to boost cervical cancer when brachytherapy is not an option—theories and applications, Ann Transl Med 5, fasc. 10: 207–207, mag. 2017, https://doi.org/10.21037/atm.2017.03.102.

Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, e N. Colombo Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann Oncol 28: iv72–iv83, lug. 2017, https://doi.org/10.1093/annonc/mdx220.

Hricak H et al., Role of Imaging in Pretreatment Evaluation of Early Invasive Cervical Cancer: Results of the Intergroup Study American College of Radiology Imaging Network 6651–Gynecologic Oncology Group 183, J Clin Oncol. 23, fasc. 36; 9329–9337, dic. 2005, https://doi.org/10.1200/JCO.2005.02.0354.

The International Collaboration of Epidemiological Studies of Cervical Cancer, Comparison of risk factors for invasive squamous cell carcinoma and adenocarcinoma of the cervix: Collaborative reanalysis of individual data on 8,097 women with squamous cell carcinoma and 1,374 women with adenocarcinoma from 12 epidemiological studies: Squamous Cell Carcinoma and Adenocarcinoma of the Cervix, Int. J. Cancer, 120, fasc. 4: 885–891, feb. 2007, https://doi.org/10.1002/ijc.22357.

Bray F et al. Trends in Cervical Squamous Cell Carcinoma Incidence in 13 European Countries: Changing Risk and the Effects of Screening, Cancer Epidemiol. Biomarkers Prev., 14, fasc. 3: 677–686, mar. 2005, https://doi.org/10.1158/1055-9965.EPI-04-0569.

Bray F et al., Incidence Trends of Adenocarcinoma of the Cervix in 13 European Countries, Cancer Epidemiol Biomarkers Prev., 14, fasc. 9: 2191–2199, set. 2005, https://doi.org/10.1158/1055-9965.EPI-05-0231.

Kersemaekers AM et al. Oncogene alterations in carcinomas of the uterine cervix: overexpression of the epidermal growth factor receptor is associated with poor prognosis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 5, fasc. 3: 577–586, mar. 1999.

Wright AA et al. Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix, Cancer., 119, fasc. 21: 3776–3783, nov. 2013, https://doi.org/10.1002/cncr.28288.

Tn ZFS, CDFM, e B. R, Molecularly targeted therapies in cervical cancer. A systematic review. Gynecol. Oncol., 126, fasc. 2, ago. 2012, https://doi.org/10.1016/j.ygyno.2012.04.007.

Hu X-L et al. Long noncoding RNA MIR210HG is induced by hypoxia-inducible factor 1α and promotes cervical cancer progression. Am J Cancer Res., 12, fasc. 6: 2783–2797, 2022.

Kaufman RH, Adam E, Vonka eV Human papillomavirus infection and cervical carcinoma, Clin Obstet Gynecol., 43, fasc. 2: 363–380, giu. 2000, https://doi.org/10.1097/00003081-200006000-00016.

Laurson J, Khan S, Chung R, Cross K, Raj eK, Epigenetic repression of E-cadherin by human papillomavirus 16 E7 protein, Carcinogenesis, 31, fasc. 5: 918–926, mag. 2010, https://doi.org/10.1093/carcin/bgq027.

Lin D et al., icrobiome factors in HPV-driven carcinogenesis and cancers, PLoS Pathog., 16, fasc. 6: e1008524, giu. 2020, https://doi.org/10.1371/journal.ppat.1008524.

Chen X-J et al. Clinical Significance of CD163+ and CD68+ Tumor-associated Macrophages in High-risk HPV-related Cervical Cancer, J. Cancer, 8, fasc. 18: 3868–3875, ott. 2017, https://doi.org/10.7150/jca.21444.

Barros MR, de Melo CML, Barros MLCMGR, de Cássia Pereira de Lima R, de Freitas AC, Venuti eA Activities of stromal and immune cells in HPV-related cancers, J Exp Clin Cancer Res CR, 37: 137, lug. 2018, https://doi.org/10.1186/s13046-018-0802-7.

Draghiciu O, Lubbers J, Nijman HW, Daemen eT, Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy, Oncoimmunology, 4, fasc. 1: e954829, gen. 2015, https://doi.org/10.4161/21624011.2014.954829.

Weber R, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol. 2018;9:1310. https://doi.org/10.3389/fimmu.2018.01310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heine A et al. Generation and functional characterization of MDSC-like cells, Oncoimmunology, 6, fasc. 4: 1295203, 2017, https://doi.org/10.1080/2162402X.2017.1295203.

Schmid MP et al. Magnetic resonance imaging for assessment of parametrial tumour spread and regression patterns in adaptive cervix cancer radiotherapy, Acta Oncol., 52, fasc. 7: 1384–1390, ott. 2013, https://doi.org/10.3109/0284186X.2013.818251.

Kidd EA et al., Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose–positron emission tomography simulation in patients with locally advanced cervical cancer, Int J Radiat Oncol, 77, fasc. 4: 1085–1091, lug. 2010, https://doi.org/10.1016/j.ijrobp.2009.06.041.

Adam JA, van Diepen PR, Mom CH, Stoker J, van Eck-Smit BLF, Bipat eS [18F]FDG-PET or PET/CT in the evaluation of pelvic and para-aortic lymph nodes in patients with locally advanced cervical cancer: A systematic review of the literature, Gynecol Oncol 159, fasc. 2: 588–596, nov. 2020, https://doi.org/10.1016/j.ygyno.2020.08.021.

Jadvar H, Colletti ePM Competitive advantage of PET/MRI, Eur J Radiol. 83, fasc. 1: 84–94, gen. 2014. https://doi.org/10.1016/j.ejrad.2013.05.028.

Li‐Ou Z et al. Correlation between tumor glucose metabolism and multiparametric functional MRI (IVIM and R2*) metrics in cervical carcinoma: Evidence from integrated 18 F‐FDG PET/MR, J. Magn. Reson. Imaging, 49, fasc. 6: 1704–1712, giu. 2019. https://doi.org/10.1002/jmri.26557.

Nazir A, Matthews R, Chimpiri A, Henretta M, Varughese J, Franceschi eD Fluorodeoxyglucose positron-emission tomography-magnetic resonance hybrid imaging: An emerging tool for staging of cancer of the uterine cervix, World J Nucl Med, 20, fasc. 02: 150–155, apr. 2021, https://doi.org/10.4103/wjnm.WJNM_53_20.

Oldan JD et al. Quantitative accuracy of positron emission tomography/magnetic resonance and positron emission tomography/computed tomography for cervical cancer. World J Nucl Med., 17, fasc. 04: 213–218, ott. 2018. https://doi.org/10.4103/wjnm.WJNM_56_17.

Xu C, Du S, Zhang S, Wang B, Dong C, Sun eH, Value of integrated PET-IVIM MR in assessing metastases in hypermetabolic pelvic lymph nodes in cervical cancer: a multi-parameter study. Eur. Radiol., 30, fasc. 5: 2483–2492, mag. 2020. https://doi.org/10.1007/s00330-019-06611-z.

Xu C, Yu Y, Li X, Sun eH Value of integrated PET-IVIM MRI in predicting lymphovascular space invasion in cervical cancer without lymphatic metastasis. Eur J Nucl Med Mol Imaging, 48, fasc. 9: 2990–3000, ago. 2021, https://doi.org/10.1007/s00259-021-05208-3.

Brandmaier P et al. Simultaneous [18F]FDG-PET/MRI: Correlation of Apparent Diffusion Coefficient (ADC) and Standardized Uptake Value (SUV) in Primary and Recurrent Cervical Cancer, PLOS ONE, 10, fasc. 11: e0141684, nov. 2015, https://doi.org/10.1371/journal.pone.0141684.

Grueneisen J et al. Correlation of Standardized Uptake Value and Apparent Diffusion Coefficient in Integrated Whole-Body PET/MRI of Primary and Recurrent Cervical Cancer. PLoS ONE, 9, fasc. 5: e96751, mag. 2014, https://doi.org/10.1371/journal.pone.0096751.

Gong J et al. Cervical cancer evaluated with integrated 18F‑FDG PET/MR, Oncol Lett giu. 2019, https://doi.org/10.3892/ol.2019.10514.

Floberg JM et al. Spatial relationship of 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography and magnetic resonance diffusion imaging metrics in cervical cancer. EJNMMI Res., 8, fasc. 1: 52, dic. 2018, https://doi.org/10.1186/s13550-018-0403-7.

JJ, WK, LX, YY, WX, e SH, Relationship between tumor heterogeneity and volume in cervical cancer: Evidence from integrated fluorodeoxyglucose 18 PET/MR texture analysis. Nucl Med Commun 42: fasc. 5, gen. 2021, https://doi.org/10.1097/MNM.0000000000001354.

Esfahani SA et al. Publisher Correction to: PET/MRI and PET/CT Radiomics in Primary Cervical Cancer: A Pilot Study on the Correlation of Pelvic PET, MRI, and CT Derived Image Features. Mol Imaging Biol., 24, fasc. 1: 70, feb. 2022, https://doi.org/10.1007/s11307-021-01671-4.

Zhang S, Xin J, Guo Q, Ma J, Ma Q, e H. Sun, Comparison of Tumor Volume Between PET and MRI in Cervical Cancer With Hybrid PET/MR, Int J Gynecol Cancer, 24, fasc. 4: 744–750, mag. 2014, https://doi.org/10.1097/IGC.0000000000000097.

Sun H et al., Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study, Eur J Nucl Med Mol Imaging, 41, fasc. 5: 898–905, mag. 2014, https://doi.org/10.1007/s00259-013-2668-4.

Zhang S et al. Accuracy of PET/MR image coregistration of cervical lesions. Nucl Med Commun., 37, fasc. 6; 609–615, giu. 2016, https://doi.org/10.1097/MNM.0000000000000482.

Ahangari S et al. Toward PET/MRI as one-stop shop for radiotherapy planning in cervical cancer patients, Acta Oncol., 60, fasc. 8: 1045–1053, ago. 2021, https://doi.org/10.1080/0284186X.2021.1936164.

Sarabhai T, et al. Simultaneous multiparametric PET/MRI for the assessment of therapeutic response to chemotherapy or concurrent chemoradiotherapy of cervical cancer patients: preliminary results. Clin Imaging. 2018;49:163–8. https://doi.org/10.1016/j.clinimag.2018.03.009.

Article  PubMed  Google Scholar 

Gao S, Du S, Lu Z, Xin J, Gao S, Sun eH, Multiparametric PET/MR (PET and MR-IVIM) for the evaluation of early treatment response and prediction of tumor recurrence in patients with locally advanced cervical cancer, Eur. Radiol., 30, fasc. 2: 1191–1201, feb. 2020, https://doi.org/10.1007/s00330-019-06428-w.

. Xu C, Sun H, Du S, Xin eJ Early treatment response of patients undergoing concurrent chemoradiotherapy for cervical cancer: An evaluation of integrated multi-parameter PET-IVIM MR, Eur J Radiol., 117: 1–8, ago. 2019, https://doi.org/10.1016/j.ejrad.2019.05.012.

Daniel M et al., Impact of hybrid PET/MR technology on multiparametric imaging and treatment response assessment of cervix cancer, Radiother. Oncol., 125, fasc. 3: 420–425, dic. 2017, https://doi.org/10.1016/j.radonc.2017.10.036.

Parisi S et al. Non-stereotactic radiotherapy in older cancer patients, Heliyon, 8, fasc. 6: e09593, mag. 2022, https://doi.org/10.1016/j.heliyon.2022.e09593.

Green J et al. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix, Cochrane Database Syst Rev., fasc. 3: CD002225, lug. 2005, https://doi.org/10.1002/14651858.CD002225.pub2.

Petrelli F, De Stefani A, Raspagliesi F, Lorusso D, Barni eS Radiotherapy with concurrent cisplatin-based doublet or weekly cisplatin for cervical cancer: A systematic review and meta-analysis, Gynecol Oncol., 134, fasc. 1: 166–171, lug. 2014, https://doi.org/10.1016/j.ygyno.2014.04.049.

Datta NR et al. Concurrent chemoradiotherapy vs. radiotherapy alone in locally advanced cervix cancer: A systematic review and meta-analysis, Gynecol Oncol, 145, fasc. 2: 374–385, mag. 2017. https://doi.org/10.1016/j.ygyno.2017.01.033.

Lim K et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer, Int J Radiat Oncol Biol Phys., 79, fasc. 2: 348–355, feb. 2011, https://doi.org/10.1016/j.ijrobp.2009.10.075.

Fave X et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?, Med Phys., 42, fasc. 12:6784–6797, dic. 2015, https://doi.org/10.1118/1.4934826.

van Timmeren JE, Leijenaar RTH, van Elmpt W, Reymen B, Lambin eP Feature selection methodology for longitudinal cone-beam CT radiomics, Acta Oncol Stockh. Swed., 56, fasc. 11: 1537–1543, nov. 2017, https://doi.org/10.1080/0284186X.2017.1350285.

Salama JK, Mundt AJ, Roeske J, Mehta eN Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies, Int J Radiat Oncol Biol Phys., 65, fasc. 4: 1170–1176, lug. 2006, https://doi.org/10.1016/j.ijrobp.2006.02.041.

Beriwal S et al. Early Clinical Outcome With Concurrent Chemotherapy and Extended-Field, Intensity-Modulated Radiotherapy for Cervical Cancer, Int J Radiat Oncol Biol Phys., 68, fasc. 1: 166–171, mag. 2007, https://doi.org/10.1016/j.ijrobp.2006.12.023.

Chen M-F, Tseng C-J, Tseng C-C, Kuo Y-C, Yu C-Y, Chen eW-C Clinical outcome in posthysterectomy cervical cancer patients treated with concurrent Cisplatin and intensity-modulated pelvic radiotherapy: comparison with conventional radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 67, fasc. 5: 1438–1444, apr. 2007, https://doi.org/10.1016/j.ijrobp.2006.11.005.

Chen M-F, Tseng C-J, Tseng C-C, Yu C-Y, Wu C-T, Chen eW-C Adjuvant concurrent chemoradiotherapy with intensity-modulated pelvic radiotherapy after surgery for high-risk, early stage cervical cancer patients, Cancer J Sudbury Mass, 14, fasc. 3: 200–206, 2008, https://doi.org/10.1097/PPO.0b013e318173a04b.

. Loiselle C, Koh eW-J The emerging use of IMRT for treatment of cervical cancer. J Natl Compr Cancer Netw JNCCN, 8, fasc. 12: 1425–1434, dic. 2010, https://doi.org/10.6004/jnccn.2010.0106.

Maemoto H, et al. Predictive factors of uterine movement during definitive radiotherapy for cervical cancer. J Radiat Res. 2017;58(3):397–404. https://doi.org/10.1093/jrr/rrw101.PMID:27744403;PMCID:PMC5441382.

Article  PubMed  Google Scholar 

Klopp AH et al. Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer, Int J Radiat Oncol Biol Phys., 86, fasc. 1: 83–90, mag. 2013, https://doi.org/10.1016/j.ijrobp.2013.01.017.

Klopp AH et al. Patient-Reported Toxicity During Pelvic Intensity-Modulated Radiation Therapy: NRG Oncology-RTOG 1203, J Clin Oncol Off J Am Soc Clin Oncol., 36, fasc. 24: 2538–2544, ago. 2018, https://doi.org/10.1200/JCO.2017.77.4273.

Fyles A, Keane TJ, Barton M, Simm eJ The effect of treatment duration in the local control of cervix cancer, Radiother Oncol J Eur Soc Ther Radiol Oncol., 25, fasc. 4: 273–279, dic. 1992, https://doi.org/10.1016/0167-8140(92)90247-r.

Girinsky T et al. Overall treatment time in advanced cervical carcinomas: a critical parameter in treatment outcome. Int J Radiat Oncol Biol Phys., 27, fasc. 5: 1051–1056, dic. 1993, https://doi.org/10.1016/0360-3016(93)90522-w.

Lanciano RM, Pajak TF, Martz K, Hanks eGE The influence of treatment time on outcome for squamous cell cancer of the uterine cervix treated with radiation: a patterns-of-care study, Int J Radiat Oncol Biol Phys., 25, fasc. 3: 391–397, feb. 1993, https://doi.org/10.1016/0360-3016(93)90058-4.

Perez CA, Grigsby PW, Castro-Vita H, Lockett eMA, Carcinoma of the uterine cervix. I. Impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy, Int J Radiat Oncol Biol Phys., 32, fasc. 5: 1275–1288, lug. 1995, https://doi.org/10.1016/0360-3016(95)00220-S.

Petereit DG et al. The adverse effect of treatment prolongation in cervical carcinoma, Int J Radiat Oncol Biol. Phys., 32, fasc. 5: 1301–1307, lug. 1995, https://doi.org/10.1016/0360-3016(94)00635-X.

Lee LJ et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part III: Low-dose-rate and pulsed-dose-rate brachytherapy, Brachytherapy, 11, fasc. 1: 53–57, gen. 2012, https://doi.org/10.1016/j.brachy.2011.07.001.

Ferini G et al., First-ever Clinical Experience With Magnetic Resonance-based Lattice Radiotherapy for Treating Bulky Gynecological Tumors, Anticancer Res, 42, fasc. 9: 4641–4646, set. 2022, https://doi.org/10.21873/anticanres.15968.

Nag S, Orton C, Young D, Erickson eB The American brachytherapy society survey of brachytherapy practice for carcinoma of the cervix in the United States. Gynecol Oncol., 73, fasc. 1: 111–118, apr. 1999, https://doi.org/10.1006/gyno.1998.5334.

Erickson B, Eifel P, Moughan J, Rownd J, Iarocci T, Owen eJ Patterns of brachytherapy practice for patients with carcinoma of the cervix (1996–1999): a patterns of care study, Int J Radiat Oncol Biol Phys, 63, fasc. 4: 1083–1092, nov. 2005, https://doi.org/10.1016/j.ijrobp.2005.04.035.

Haie-Meder C et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV, Radiother Oncol J Eur Soc Ther Radiol Oncol, 74, fasc. 3: 235–245, mar. 2005, https://doi.org/10.1016/j.radonc.2004.12.015.

Nag S et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group, Int J Radiat Oncol Biol Phys., 60, fasc. 4: 1160–1172, nov. 2004, https://doi.org/10.1016/j.ijrobp.2004.04.032.

Mayadev J et al. American brachytherapy task group report: a pooled analysis of clinical outcomes for high-dose-rate brachytherapy for cervical cancer. Brachytherapy. 2017; 16(1):22–43. https://doi.org/10.1016/j.brachy.2016.03.008. PMID: 28109631; PMCID: PMC5497694.

Viswanathan AN, Thomadsen B, American Brachytherapy Society Cervical Cancer Recommendations Committee, e American Brachytherapy Society, American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles, Brachytherapy, 11, fasc. 1: 33–46, 2012, https://doi.org/10.1016/j.brachy.2011.07.003.

Hanks GE, Herring DF, Kramer eS Patterns of care outcome studies. Results of the national practice in cancer of the cervix, Cancer, 51, fasc. 5: 959–967, mar. 1983, https://doi.org/10.1002/1097-0142(19830301)51:5<959::aid-cncr2820510533>3.0.co;2-k.

Han K, Milosevic M, Fyles A, Pintilie M, Viswanathan eAN Trends in the utilization of brachytherapy in cervical cancer in the United States, Int J Radiat Oncol Biol Phys., 87, fasc. 1: 111–119, set. 2013, https://doi.org/10.1016/j.ijrobp.2013.05.033.

Pötter R et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology, Radiother Oncol J Eur Soc Ther Radiol Oncol., 78, fasc. 1: 67–77, gen. 2006, https://doi.org/10.1016/j.radonc.2005.11.014.

Hellebust TP et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy, Radiother Oncol J Eur Soc Ther Radiol Oncol., 96, fasc. 2: 153–160, ago. 2010, https://doi.org/10.1016/j.radonc.2010.06.004.

Tan Mbbs Mrcp Frcr Md LT et al. Image-guided Adaptive Radiotherapy in Cervical Cancer, Semin. Radiat. Oncol., 29, fasc. 3: 284–298, lug. 2019, https://doi.org/10.1016/j.semradonc.2019.02.010.

Humphrey P, Bennett C, Cramp eF The experiences of women receiving brachytherapy for cervical cancer: A systematic literature review, Radiogr Lond Engl 1995, 24, fasc. 4: 396–403, nov. 2018, https://doi.org/10.1016/j.radi.2018.06.002.

Viswanathan AN et al. International brachytherapy practice patterns: a survey of the gynecologic cancer intergroup (GCIG), Int J Radiat Oncol Biol Phys., 82, fasc. 1: 250–255, gen. 2012, https://doi.org/10.1016/j.ijrobp.2010.10.030.

Tagliaferri L. et al. Current state of interventional radiotherapy (brachytherapy) education in Italy: results of the INTERACTS survey. J Contemp Brachytherapy. 2019;11(1):48–53. https://doi.org/10.5114/jcb.2019.83137. Epub 2019 Feb 28. PMID: 30911310; PMCID: PMC6431105.

Landoni F et al. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer, Lancet Lond Engl., 350, fasc. 9077: 535–540, ago. 1997, https://doi.org/10.1016/S0140-6736(97)02250-2..

Naga Ch P, Gurram L, Chopra S, Mahantshetty eU The management of locally advanced cervical cancer, Curr Opin Oncol., 30, fasc. 5: 323–329, set. 2018, https://doi.org/10.1097/CCO.0000000000000471.

Cibula D et al. ESGO/ESTRO/ESP Guidelines for the management of patients with cervical cancer—Update 2023, Virchows Arch., mag. 2023, https://doi.org/10.1007/s00428-023-03552-3.

Shim S-H, Kim S-N, Chae SH, Kim JE, Lee eSJ, Impact of adjuvant hysterectomy on prognosis in patients with locally advanced cervical cancer treated with concurrent chemoradiotherapy: a meta-analysis, J Gynecol Oncol. 29, fasc. 2: e25, mar. 2018, https://doi.org/10.3802/jgo.2018.29.e25.

van Kol KGG, Ebisch RMF, Piek JMJ, Zusterzeel PLM, Vergeldt TFM, Bekkers eRLM Salvage surgery for patients with residual disease after chemoradiation therapy for locally advanced cervical cancer: a systematic review on indication, complications, and survival, Acta Obstet Gynecol Scand., 100, fasc. 7: 1176–1185, lug. 2021, https://doi.org/10.1111/aogs.14093.

Westin SN et al. Overall survival after pelvic exenteration for gynecologic malignancy, Gynecol. Oncol., 134, fasc. 3: 546–551, set. 2014, https://doi.org/10.1016/j.ygyno.2014.06.034.

Brown KGM, Solomon MJ, Koh eCE Pelvic Exenteration surgery: the evolution of radical surgical techniques for advanced and recurrent pelvic malignancy, Dis Colon Rectum, 60, fasc. 7: 745–754, lug. 2017, https://doi.org/10.1097/DCR.0000000000000839.

Vizzielli G et al. Is a Vaginectomy enough or is a pelvic exenteration always required for surgical treatment of recurrent cervical cancer? a propensity-matched study, Ann Surg Oncol., 28, fasc. 6: 3281–3290, giu. 2021, https://doi.org/10.1245/s10434-020-09207-w.

Reinisch M, Ataseven B, Kümmel eS Neoadjuvant Dose-dense and dose-intensified chemotherapy in breast cancer—review of the literature, Breast Care, 11, fasc. 1: 13–20, feb. 2016, https://doi.org/10.1159/000444543.

Shibutani T et al. Dose-dense paclitaxel and carboplatin vs. conventional paclitaxel and carboplatin as neoadjuvant chemotherapy for advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer: a retrospective study, Int J Clin Oncol., 25, fasc. 3: 502–507, mar. 2020, https://doi.org/10.1007/s10147-019-01567-y.

McCormack M INTERLACE: A Phase III multicentre trial of weekly induction chemotherapy followed by standard chemoradiation versus standard chemoradiation alone in patients with locally advanced cervical cancer. https://clinicaltrials.gov/ct2/show/NCT01566240 (consultato 5 aprile 2023).

Singh RB et al. Neoadjuvant chemotherapy with weekly paclitaxel and carboplatin followed by chemoradiation in locally advanced cervical carcinoma: a pilot study, Gynecol Oncol. 129, fasc. 1: 124–128, apr. 2013, https://doi.org/10.1016/j.ygyno.2013.01.011.

McCormack M et al. A phase II study of weekly neoadjuvant chemotherapy followed by radical chemoradiation for locally advanced cervical cancer, Br. J. Cancer, 108, fasc. 12: 2464–2469, giu. 2013, https://doi.org/10.1038/bjc.2013.230.

T. S, K. K, L. M, L. P, M. S, e S. B, Adjuvant chemotherapy after concurrent chemoradiation for locally advanced cervical cancer, Cochrane Database Syst Rev., 2014, fasc. 12, mar. 2014, https://doi.org/10.1002/14651858.CD010401.pub2.

Liu H, et al. Concurrent chemoradiotherapy followed by adjuvant chemotherapy versus concurrent chemoradiotherapy alone in locally advanced cervical cancer: A systematic review and meta-analysis. Front Oncol. 2022;12: 997030. https://doi.org/10.3389/fonc.2022.997030.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eskander RN, Tewari eKS. Beyond angiogenesis blockade: targeted therapy for advanced cervical cancer, J. Gynecol Oncol., 25, fasc. 3; 249, 2014, https://doi.org/10.3802/jgo.2014.25.3.249.

Monk BJ et al. Phase II, Open-Label Study of Pazopanib or Lapatinib Monotherapy Compared With Pazopanib Plus Lapatinib Combination Therapy in Patients With Advanced and Recurrent Cervical Cancer, J Clin Oncol., 28, fasc. 22: 3562–3569, ago. 2010, https://doi.org/10.1200/JCO.2009.26.9571.

Frenel J-S et al. Pembrolizumab in patients with advanced cervical squamous cell cancer: Preliminary results from the phase Ib KEYNOTE-028 study, J Clin Oncol., mag. 2016, https://doi.org/10.1200/JCO.2016.34.15_suppl.5515.

Heong V, Ngoi N, Tan eDSP, Update on immune checkpoint inhibitors in gynecological cancers, J Gynecol Oncol., 28, fasc. 2: e20, 2017, doi: https://doi.org/10.3802/jgo.2017.28.e20.

Hsieh C et al. Stereotactic body radiation therapy via helical tomotherapy to replace brachytherapy for brachytherapy-unsuitable cervical cancer patients &ndash; a preliminary result, OncoTargets Ther., 59, feb. 2013, https://doi.org/10.2147/OTT.S40370.

Barraclough LH, Swindell R, Livsey JE, Hunter RD, Davidson eSE External Beam Boost for Cancer of the Cervix Uteri When Intracavitary Therapy Cannot Be Performed, Int J Radiat Oncol., 71, fasc. 3: 772–778, lug. 2008, https://doi.org/10.1016/j.ijrobp.2007.10.066.

留言 (0)

沒有登入
gif