The effect of bone remodeling with photobiomodulation in dentistry: a review study

Oshiro T, Calderhead RG (1988) Low level laser therapy: a practical introduction. United Kingdom, Chichester

Google Scholar 

Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol, B 49:1–17. https://doi.org/10.1016/S1011-1344(98)00219-X

Article  CAS  PubMed  Google Scholar 

Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Ther 23:355–361. https://doi.org/10.1089/pho.2005.23.355

Article  CAS  Google Scholar 

de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22. https://doi.org/10.1109/JSTQE.2016.2561201

Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 11:2191–2208. https://doi.org/10.2147/NDT.S78182

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med 40:46–54. https://doi.org/10.1002/lsm.20589

Article  PubMed  Google Scholar 

Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494. https://doi.org/10.1038/187493a0

Article  Google Scholar 

Taylor R, Shklar G, Roeber F (1965) The effects of laser radiation on teeth, dental pulp, and oral mucosa of experimental animals. Oral Surg Oral Med Oral Pathol 19:786–795. https://doi.org/10.1016/0030-4220(65)90351-8

Article  CAS  PubMed  Google Scholar 

Lobene RR, Samuel Fine SM (1966) Interaction of laser radiation with oral hard tissues. J Prosthet Dent 16:589–597. https://doi.org/10.1016/0022-3913(66)90066-7

Article  CAS  PubMed  Google Scholar 

AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249. https://doi.org/10.1007/s10103-011-0885-2

Article  PubMed  Google Scholar 

Pires Oliveira DA, de Oliveira RF, Zangaro RA, Soares CP (2008) Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg 26:401–404. https://doi.org/10.1089/pho.2007.2101

Article  PubMed  Google Scholar 

Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4:337–361. https://doi.org/10.3934/biophy.2017.3.337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prabhu V, Rao SB, Rao NB, Aithal KB, Kumar P, Mahato KK (2010) Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration–an in vivo experimental study. Photochem Photobiol 86:1364–1372. https://doi.org/10.1111/j.1751-1097.2010.00791.x

Article  CAS  PubMed  Google Scholar 

Reza B, Soheil N, Ehsan B, Kourosh S, Reza F (2021) Efficacy of photo bio-modulation therapy for pain relief and soft tissue wound healing after dental implant surgery: A double-blind randomized clinical trial. J Photochem Photobiol 8:100062. https://doi.org/10.1016/j.jpap.2021.100062

Article  Google Scholar 

Gur A, Sarac AJ, Cevik R, Altindag O, Sarac S (2004) Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomize-controlled trial. Lasers Surg Med 35:229–235. https://doi.org/10.1002/lsm.20082

Article  PubMed  Google Scholar 

Langella LG, Casalechi HL, Tomazoni SS et al (2018) Photobiomodulation therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty-a randomized, triple-blind, placebo-controlled clinical trial. Lasers Med Sci 33:1933–1940. https://doi.org/10.1007/s10103-018-2558-x

Article  PubMed  Google Scholar 

Zayed SM, Hakim AAA (2020) Clinical efficacy of photobiomodulation on dental implant osseointegration: a systematic review. Saudi J Med Med Sci 8:80–86. https://doi.org/10.4103/sjmms.sjmms_410_19

Article  PubMed  PubMed Central  Google Scholar 

Sourvanos D, Poon J, Lander B, Sarmiento H, Carroll J, Zhu TC, Fiorellini JP (2023) Improving titanium implant stability with photobiomodulation: a review and meta-analysis of irradiation parameters. Photobiomodul Photomed Laser Surg 41:93–103. https://doi.org/10.1089/photob.2022.0161

Article  CAS  PubMed  Google Scholar 

Poli PP, Jesus LK, Dayube URC et al (2022) An Evaluation of the effects of photobiomodulation therapy on the peri-Implant bone healing of implants with different surfaces: an in vivo study. Materials 15:4371. https://doi.org/10.3390/ma15134371

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magri AMP, Fernandes KR, Assis L et al (2015) Photobiomodulation and bone healing in diabetic rats: evaluation of bone response using a tibial defect experimental model. Lasers Med Sci 30:1949–1957. https://doi.org/10.1007/s10103-015-1789-3

Article  PubMed  Google Scholar 

Bai J, Li L, Kou N et al (2021) Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res Ther 12:1–18. https://doi.org/10.1186/s13287-021-02493-5

Article  CAS  Google Scholar 

Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291. https://doi.org/10.1002/(sici)1096-9101(2000)26:3%3c282::aid-lsm6%3e3.0.co;2-x

Article  CAS  PubMed  Google Scholar 

Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035

Article  CAS  PubMed  Google Scholar 

Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166. https://doi.org/10.1089/pho.2005.23.161

Article  CAS  PubMed  Google Scholar 

Ninomiya T, Hosoya A, Nakamura H, Sano K, Nishisaka T, Ozawa H (2007) Increase of bone volume by a nanosecond pulsed laser irradiation is caused by a decreased osteoclast number and an activated osteoblasts. Bone 40:140–148. https://doi.org/10.1016/j.bone.2006.07.026

Article  PubMed  Google Scholar 

Ribeiro LNS, de Figueiredo FAT, da Silva Mira PC et al (2022) Low-level laser therapy (LLLT) improves alveolar bone healing in rats. Lasers Med Sci 37:961–969. https://doi.org/10.1007/s10103-021-03340-y

Article  PubMed  Google Scholar 

Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26:179–184

CAS  PubMed  Google Scholar 

Ingram RT, Clarke BL, Fisher LW, Fitzpatrick LA (1993) Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res 8:1019–1029. https://doi.org/10.1002/jbmr.5650080902

Article  CAS  PubMed  Google Scholar 

Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047. https://doi.org/10.1152/physrev.1989.69.3.990

Article  CAS  PubMed  Google Scholar 

Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509. https://doi.org/10.1016/j.biomaterials.2004.09.033

Article  CAS  PubMed  Google Scholar 

Zhou Y, Sun F, Zhang Z et al (2023) Influence of Er: YAG laser irradiation on the outcomes of alveolar ridge preservation at the infected molar sites: a randomized controlled trial. BMC Oral Health 23:1–12. https://doi.org/10.1186/s12903-023-02996-y

Article  CAS  Google Scholar 

Monea A, Beresescu G, Boeriu S, Tibor M, Popsor S, Antonescu DM (2015) Bone healing after low-level laser application in extraction sockets grafted with allograft material and covered with a resorbable collagen dressing: A pilot histological evaluation. BMC Oral Health 15:134. https://doi.org/10.1186/s12903-015-0122-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boldrini C, de Almeida JM, Fernandes LA et al (2013) Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci 28:349–352. https://doi.org/10.1007/s10103-012-1167-3

Article  PubMed  Google Scholar 

Lopes CB, Pinheiro AL, Sathaiah S, Da Silva NS, Salgado MA (2007) Infrared laser photobiomodulation (lambda 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25:96–101. https://doi.org/10.1089/pho.2006.2030

Article  CAS  PubMed  Google Scholar 

Khadra M, Ronold HJ, Lyngstadaas SP, Ellingsen JE, Haanaes HR (2004) Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 15:325–332. https://doi.org/10.1111/j.1600-0501.2004.00994.x

Article  PubMed  Google Scholar 

Maluf AP, Maluf RP, Brito Cda R, Franca FM, de Brito Jr RB (2010) Mechanical evaluation of the influence of low-level laser therapy in secondary stability of implants in mice shinbones. Lasers Med Sci 25:693–698. https://doi.org/10.1007/s10103-010-0778-9

Article 

留言 (0)

沒有登入
gif