Biotransformation of progesterone by endophytic fungal cells immobilized on electrospun nanofibrous membrane

Aamir S, Sutar S, Singh SK, Baghela A (2015) A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quar 5:74–81. https://doi.org/10.5943/ppq/5/2/6

Article  Google Scholar 

Ahn H, Rehman JU, Kim T, Oh MS, Yoon HY, Kim C, Lee Y, Shin SG, Jeon J-R (2020) Fungal mycelia functionalization with halloysite nanotubes for hyphal spreading and sorption behavior regulation: a new bio-ceramic hybrid for enhanced water treatment. Water Res 186:116380. https://doi.org/10.1016/j.watres.2020.116380

Article  CAS  PubMed  Google Scholar 

Alam R, Mahmood RA, Islam S, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Kim S (2023) Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus, Trametes hirsuta D7, using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment. Chemosphere 313:137505. https://doi.org/10.1016/j.chemosphere.2022.137505

Article  CAS  PubMed  Google Scholar 

Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. https://doi.org/10.1890/05-1459

Article  PubMed  Google Scholar 

Balusamy B, Sarioglu OF, Senthamizhan A, Uyar T (2019) Rational design and development of electrospun nanofibrous biohybrid composites. ACS Appl Bio Mater 2:3128. https://doi.org/10.1021/acsabm.9b00308

Article  CAS  PubMed  Google Scholar 

Beltrán-Flores E, Pla-Ferriol M, Martínez-Alonso M, Gaju N, Blánquez P, Sarrà M (2022) Fungal bioremediation of agricultural wastewater in a long-term treatment: biomass stabilization by immobilization strategy. J Hazard Mater 439:129614. https://doi.org/10.1016/j.jhazmat.2022.129614

Article  CAS  PubMed  Google Scholar 

Bexfield LM, Toccalino PL, Belitz K, Foreman WT, Furlong ET (2019) Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environ Sci Technol 53:2950–2960. https://doi.org/10.1021/acs.est.8b05592

Article  CAS  PubMed  Google Scholar 

Brown FJ, Djerassi C (1980) Elucidation of the course of the electron impact induced fragmentation of α, β-unsaturated 3-keto steroids. J Am Chem Soc 102:807–817. https://doi.org/10.1021/ja00522a061

Article  CAS  Google Scholar 

Brown FJ, Djerassi C (1981) Effect of additional double bonds on the mass spectrometric fragmentations of ∆4-3-keto steroids. J Org Chem 46:954–963. https://doi.org/10.1021/jo00318a022

Article  CAS  Google Scholar 

Carlström K (1967) Mechanism of the side chain degradation of progesterone by microorganisms. Acta Chem Scand 21:1297–1303. https://doi.org/10.3891/acta.chem.scand.21-1297

Article  PubMed  Google Scholar 

Creek DJ, Dunn WB, Fiehn O, Griffin JL, Hall RD, Lei Z, Mistrik R, Neumann S, Schymanski EL, Sumner LW, Trengove R, Wolfender J-L (2014) Metabolite identification: are you sure? And how do your peers gauge your confidence? Metabolomics 10:350–353. https://doi.org/10.1007/s11306-014-0656-8

Article  CAS  Google Scholar 

Cruz de Carvalho T, de Oliveira SE, Soares GA, Parreira RLT, Ambrósio SR, Furtado NAJC (2020) Fungal biocatalysts for labdane diterpene hydroxylation. Bioprocess Biosyst Eng 43:1051–1059. https://doi.org/10.1007/s00449-020-02303-x

Article  CAS  PubMed  Google Scholar 

de Paula SFC, Rosset IG, Porto ALM (2021) Hydroxylated steroids in C-7 and C-15 positions from progesterone bio-oxidation by the marine-derived fungus Penicillium oxalicum CBMAI 1996. Biocatal Agric Biotechnol 37:102167. https://doi.org/10.1016/j.bcab.2021.102167

Article  CAS  Google Scholar 

do Nascimento JS, Silva FM, Magallanes-Noguera CA, Kurina-Sanz M, Santos EG, Caldas IS, Luiz JHH, Silva EO, (2020) Natural trypanocidal product produced by endophytic fungi through co-culturing. Folia Microbiol 65:323–328. https://doi.org/10.1007/s12223-019-00727-x

Article  CAS  Google Scholar 

Facure MHM, Mercante LA, Correa DS (2022) Polyacrylonitrile/reduced graphene oxide free-standing nanofibrous membranes for detecting endocrine disruptors. ACS Appl Nano Mater 5:6376–6384. https://doi.org/10.1021/acsanm.2c00484

Article  CAS  Google Scholar 

George J, Anand SS, Senthil Kumar P, Saravanan P, Lenin R, Rajendran DS, Venkataraman S, Vaidyanathan VK, Vo D-VN (2022) Biocatalytic polymeric membranes to decrease biofilm fouling and remove organic contaminants in wastewater: a review. Environ Chem Lett 20:1897–1927. https://doi.org/10.1007/s10311-022-01413-0

Article  CAS  Google Scholar 

Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432. https://doi.org/10.1017/S0953756201004725

Article  Google Scholar 

Hegazy M-EF, Mohamed TA, ElShamy AI, Mohamed AH, Mahalel UA, Reda EH, Shaheen AM, Tawfik WA, Shahat AA, Shams KA, Abdel-Azim NS, Hammouda FM (2015) Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: a review. J Adv Res 6:17–33. https://doi.org/10.1016/j.jare.2014.11.009

Article  CAS  PubMed  Google Scholar 

Hussain R, Ahmed M, Khan TA, Akhter Y (2020) Fungal P450 monooxygenases - the diversity in catalysis and their promising roles in biocontrol activity. Appl Microbiol Biotechnol 104:989–999. https://doi.org/10.1007/s00253-019-10305-3

Article  CAS  PubMed  Google Scholar 

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

Article  CAS  PubMed  Google Scholar 

Mercante LA, Pavinatto A, Pereira TS, Migliorini FL, dos Santos DM, Correa DS (2021) Nanofibers interfaces for biosensing: design and applications. Sensors and Actuators Reports 3:100048. https://doi.org/10.1016/j.snr.2021.100048

Article  Google Scholar 

Mir-Tutusaus JA, Baccar R, Caminal G, Sarrà M (2018) Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Res 138:137–151. https://doi.org/10.1016/j.watres.2018.02.056

Article  CAS  PubMed  Google Scholar 

Narayanan M, Murugan JM, Kandasamy G, Kandasamy S, Nasif O, Rajendran M, Pugazhendhi A (2022) The biotransformation potential of Bacillus cereus on β- cypermethrin to protect the earthworm (Perionyx excavatus) on insecticide -contaminated soil. Arch Agron Soil Sci 68:944–955. https://doi.org/10.1080/03650340.2020.1864339

Article  CAS  Google Scholar 

Nassiri-Koopaei N, Faramarzi MA (2015) Recent developments in the fungal transformation of steroids. Biocatal Biotransformation 33:1–28. https://doi.org/10.3109/10242422.2015.1022533

Article  CAS  Google Scholar 

Pereira dos Santos VH, Coelho Neto DM, Lacerda Júnior V, Borges WS, Silva EO (2020) Fungal biotransformation: an efficient approach for stereoselective chemical reactions. Curr Org Chem 24:2902–2953. https://doi.org/10.2174/1385272824999201111203506

Article  CAS  Google Scholar 

Pereira dos Santos VH, Luiz JHH, dos Anjos JP, de Oliveira SE (2022) Oxidative potential of two Brazilian endophytic fungi from Handroanthus impetiginosus towards progesterone. Steroids 187:109101. https://doi.org/10.1016/j.steroids.2022.109101

Article  CAS  PubMed  Google Scholar 

Purohit J, Chattopadhyay A, Biswas MK, Singh NK (2018) Mycoremediation of agricultural soil: bioprospection for sustainable development. Mycoremediation and environmental sustainability. Springer International Publishing, Cham, Switzerland, pp 91–120

Chapter  Google Scholar 

Qi-he C, Jing L, Hai-feng Z, Guo-qing H, Ming-liang F (2009) The betulinic acid production from betulin through biotransformation by fungi. Enzyme Microb Technol 45:175–180. https://doi.org/10.1016/j.enzmictec.2009.06.005

Article  CAS  Google Scholar 

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Article  CAS  PubMed  Google Scholar 

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thevis M, Schänzer W (2007) Mass spectrometry in sports drug testing: structure characterization and analytical assays. Mass Spectrom Rev 26:79–107. https://doi.org/10.1002/mas.20107

Article  CAS  PubMed  Google Scholar 

Thompson J (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J (2023) Marine-Derived Fungi as Biocatalysts Front Microbiol 14:1125639. https://doi.org/10.3389/fmicb.2023.1125639

Article  PubMed  Google Scholar 

Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology-the future of green chemistry? Green Chem 13:3007. https://doi.org/10.1039/c1gc15579b

Article  CAS  Google Scholar 

Xiong L, Lyu K, Zeng Y, Yang C, Chi F, Hu S, Long X (2023) Stable and high-flux polyacrylonitrile/hafnium phosphonate nanofibrous membranes for efficient removal of actinides from strong acidic solutions. J Environ Chem Eng 11:109619. https://doi.org/10.1016/j.jece.2023.109619

Article  CAS  Google Scholar 

Xu Y-X, Jiang Z-D, Du X-P, Zheng M-J, Fan-Yang Y, Ni H, Chen F (2022) The identification of biotransformation pathways for removing fishy malodor from Bangia fusco-purpurea using fermentation with Saccharomyces cerevisiae. Food Chem 380:132103.

留言 (0)

沒有登入
gif