Evaluation of progression-free survival as a surrogate endpoint for overall survival in locally advanced or metastatic differentiated thyroid cancer: a systematic review

M. Li, L. Dal Maso, S. Vaccarella, Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol. 8(6), 468–470 (2020). https://doi.org/10.1016/S2213-8587(20)30115-7

Article  PubMed  Google Scholar 

H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA 317(13), 1338–1348 (2017). https://doi.org/10.1001/jama.2017.2719

Article  PubMed  PubMed Central  Google Scholar 

C.D. Seib, J.A. Sosa, Evolving understanding of the epidemiology of thyroid cancer. Endocrinol. Metab. Clin. N. Am. 48(1), 23–35 (2019). https://doi.org/10.1016/j.ecl.2018.10.002

Article  Google Scholar 

M. Schlumberger, S. Leboulleux, Current practice in patients with differentiated thyroid cancer. Nat. Rev. Endocrinol. 17(3), 176–188 (2021). https://doi.org/10.1038/s41574-020-00448-z

Article  CAS  PubMed  Google Scholar 

J. Jonklaas, N.J. Sarlis, D. Litofsky et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 16(12), 1229–1242 (2006). https://doi.org/10.1089/thy.2006.16.1229

Article  PubMed  Google Scholar 

M. Shoup, A. Stojadinovic, A. Nissan et al. Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. J. Am. Coll. Surg. 197(2), 191–197 (2003). https://doi.org/10.1016/S1072-7515(03)00332-6

Article  PubMed  Google Scholar 

C. Durante, N. Haddy, E. Baudin et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 91(8), 2892–2899 (2006). https://doi.org/10.1210/jc.2005-2838

Article  CAS  PubMed  Google Scholar 

M.S. Brose, J.W.A. Smit, C.C. Lin et al. Multikinase inhibitors for the treatment of asymptomatic radioactive iodine-refractory differentiated thyroid cancer: global noninterventional study (RIFTOS MKI). Thyroid 32(9), 1059–1068 (2022). https://doi.org/10.1089/thy.2022.0061

Article  CAS  PubMed  Google Scholar 

M. Savina, S. Gourgou, A. Italiano et al. Meta-analyses evaluating surrogate endpoints for overall survival in cancer randomized trials: a critical review. Crit. Rev. Oncol. Hematol. 123, 21–41 (2018). https://doi.org/10.1016/j.critrevonc.2017.11.014

Article  PubMed  Google Scholar 

F. Fiteni, V. Westeel, X. Pivot, C. Borg, D. Vernerey, F. Bonnetain, Endpoints in cancer clinical trials. J. Visc. Surg. 151(1), 17–22 (2014). https://doi.org/10.1016/j.jviscsurg.2013.10.001

Article  CAS  PubMed  Google Scholar 

M. Gion, J.M. Pérez-García, A. Llombart-Cussac, M. Sampayo-Cordero, J. Cortés, A. Malfettone, Surrogate endpoints for early-stage breast cancer: a review of the state of the art, controversies, and future prospects. Ther. Adv. Med Oncol. 13, 17588359211059587 (2021). https://doi.org/10.1177/17588359211059587

Article  PubMed  PubMed Central  Google Scholar 

M. Buyse, G. Molenberghs, Criteria for the validation of surrogate endpoints in randomized experiments. Biometrics 54(3), 1014–1029 (1998)

Article  CAS  PubMed  Google Scholar 

M. Buyse, G. Molenberghs, T. Burzykowski, D. Renard, H. Geys, The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics 1(1), 49–67 (2000). https://doi.org/10.1093/biostatistics/1.1.49

Article  CAS  PubMed  Google Scholar 

W. Xie, S. Halabi, J.F. Tierney et al. A systematic review and recommendation for reporting of surrogate endpoint evaluation using meta-analyses. JNCI Cancer Spectr. 3(1), pkz002 (2019). https://doi.org/10.1093/jncics/pkz002

Article  PubMed  PubMed Central  Google Scholar 

FDA: Table of surrogate endpoints that were the basis of drug approval licensure. https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure. Accessed 15 June 2022

D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman; PRISMA Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339, b2535 (2009). https://doi.org/10.1136/bmj.b2535

Article  PubMed  PubMed Central  Google Scholar 

J.P. Higgins, D.G. Altman, P.C. Gøtzsche et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343, d5928 (2011). https://doi.org/10.1136/bmj.d5928

Article  PubMed  PubMed Central  Google Scholar 

S. Leboulleux, L. Bastholt, T. Krause et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 13(9), 897–905 (2012). https://doi.org/10.1016/S1470-2045(12)70335-2

Article  CAS  PubMed  Google Scholar 

M.S. Brose, C.M. Nutting, B. Jarzab et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384(9940), 319–328 (2014). https://doi.org/10.1016/S0140-6736(14)60421-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Schlumberger, M. Tahara, L.J. Wirth et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372(7), 621–630 (2015). https://doi.org/10.1056/NEJMoa1406470

Article  CAS  PubMed  Google Scholar 

Chi Y, Gao M, Zhang Y, et al. LBA88 Anlotinib in locally advanced or metastatic radioiodine-refractory differentiated thyroid carcinoma: a randomized, double-blind, multicenter phase II trial. Ann Oncol. 31 (2020). https://doi.org/10.1016/j.annonc.2020.08.2332

Y. Lin, S. Qin, Z. Li et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: the REALITY randomized clinical trial. JAMA Oncol. 8(2), 242–250 (2022). https://doi.org/10.1001/jamaoncol.2021.6268

Article  PubMed  Google Scholar 

M.S. Brose, B. Robinson, S.I. Sherman et al. Cabozantinib versus placebo in patients with radioiodine-refractory differentiated thyroid cancer who have progressed after prior VEGFR-targeted therapy: results from the phase 3 COSMIC-311 trial. J. Clin. Oncol. 39, 6001–6001 (2021). https://doi.org/10.1200/JCO.2021.39.15_suppl.6001

Article  Google Scholar 

Y. Chi, M. Gao, Y. Zhang et al. Anlotinib in radioiodine-refractory differentiated thyroid carcinoma: a subanalysis based on ALTER01032 study for patients with poor baseline characteristics. J. Clin. Oncol. 39, 6022–6022 (2021). https://doi.org/10.1200/JCO.2021.39.15_suppl.6022

Article  Google Scholar 

J.C. Del Paggio, J.S. Berry, W.M. Hopman et al. Evolution of the randomized clinical trial in the era of precision oncology. JAMA Oncol. 7(5), 728–734 (2021). https://doi.org/10.1001/jamaoncol.2021.0379

Article  PubMed  Google Scholar 

P.A. Tang, S.M. Bentzen, E.X. Chen, L.L. Siu, Surrogate end points for median overall survival in metastatic colorectal cancer: literature-based analysis from 39 randomized controlled trials of first-line chemotherapy. J. Clin. Oncol. 25(29), 4562–4568 (2007). https://doi.org/10.1200/JCO.2006.08.1935

Article  PubMed  Google Scholar 

N.R. Foster, Y. Qi, Q. Shi et al. Tumor response and progression-free survival as potential surrogate endpoints for overall survival in extensive stage small-cell lung cancer: findings on the basis of North Central Cancer Treatment Group trials. Cancer. 117(6), 1262–1271 (2011). https://doi.org/10.1002/cncr.25526

Article  PubMed  Google Scholar 

A. Mauguen, J.P. Pignon, S. Burdett et al. Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: a re-analysis of meta-analyses of individual patients’ data. Lancet Oncol. 14(7), 619–626 (2013). https://doi.org/10.1016/S1470-2045(13)70158-X

Article  PubMed  PubMed Central  Google Scholar 

I.F. Tannock, G.R. Pond, C.M. Booth, Biased evaluation in cancer drug trials-how use of progression-free survival as the primary end point can mislead. JAMA Oncol. 8(5), 679–680 (2022). https://doi.org/10.1001/jamaoncol.2021.8206

Article  PubMed  Google Scholar 

M. Merino, Y. Kasamon, M. Theoret, R. Pazdur, P. Kluetz, N. Gormley, Irreconcilable differences: the divorce between response rates, progression-free survival, and overall survival. J. Clin. Oncol. 41(15), 2706–2712 (2023). https://doi.org/10.1200/JCO.23.00225

Article  PubMed  Google Scholar 

J. Ahn, E. Song, W.G. Kim et al. Long-term clinical outcomes of papillary thyroid carcinoma patients with biochemical incomplete response. Endocrine 67(3), 623–629 (2020). https://doi.org/10.1007/s12020-019-02142-1

Article  CAS  PubMed  Google Scholar 

B. Barres, A. Kelly, F. Kwiatkowski et al. Stimulated thyroglobulin and thyroglobulin reduction index predict excellent response in differentiated thyroid cancers. J. Clin. Endocrinol. Metab. 104(8), 3462–3472 (2019). https://doi.org/10.1210/jc.2018-02680

Article  PubMed  Google Scholar 

Y. Wang, J. Wu, L. Jiang, X. Zhang, B. Liu, Prognostic value of post-ablation stimulated thyroglobulin in differentiated thyroid cancer patients with biochemical incomplete response: a bi-center observational study. Endocrine 76(1), 109–115 (2022). https://doi.org/10.1007/s12020-021-02976-8

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif