Force USPST, Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M et al (2021) Screening for lung cancer: us preventive services task force recommendation statement. JAMA 325(10):962–970. https://doi.org/10.1001/jama.2021.1117
Oudkerk M, Liu S, Heuvelmans MA, Walter JE, Field JK (2021) Lung cancer LDCT screening and mortality reduction–evidence, pitfalls and future perspectives. Nat Rev Clin Oncol 18(3):135–151. https://doi.org/10.1038/s41571-020-00432-6
Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409. https://doi.org/10.1056/NEJMoa1102873
Gao W, Wen CP, Wu A, Welch HG (2022) Association of computed tomographic screening promotion with lung cancer overdiagnosis among asian women. JAMA Intern Med 182(3):283–290. https://doi.org/10.1001/jamainternmed.2021.7769
Meza R, Jeon J, Toumazis I, Ten Haaf K, Cao P, Bastani M et al (2021) Evaluation of the benefits and harms of lung cancer screening with low-dose computed tomography: modeling study for the US preventive services task force. JAMA 325(10):988–997. https://doi.org/10.1001/jama.2021.1077
Article PubMed PubMed Central Google Scholar
Lin CY, Chang CC, Huang LT, Chung TJ, Liu YS, Yen YT et al (2021) Computed tomography-guided methylene blue localization: single vs. multiple lung nodules. Front Med (Lausanne) 8:661956. https://doi.org/10.3389/fmed.2021.661956
Article PubMed PubMed Central Google Scholar
Mazzone PJ, Lam L (2022) Evaluating the patient with a pulmonary nodule: a review. JAMA 327(3):264–273. https://doi.org/10.1001/jama.2021.24287
de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA et al (2020) Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med 382(6):503–513. https://doi.org/10.1056/NEJMoa1911793
Ost DE, Gould MK (2012) Decision making in patients with pulmonary nodules. Am J Respir Crit Care Med 185(4):363–372. https://doi.org/10.1164/rccm.201104-0679CI
Article PubMed PubMed Central Google Scholar
McKee BJ, Regis SM, McKee AB, Flacke S, Wald C (2015) Performance of ACR Lung-RADS in a clinical CT lung screening program. J Am Coll Radiol 12(3):273–276. https://doi.org/10.1016/j.jacr.2014.08.004
Henschke CI, Yip R, Yankelevitz DF, Smith JP (2013) Definition of a positive test result in computed tomography screening for lung cancer: a cohort study. Ann Intern Med 158(4):246–252. https://doi.org/10.7326/0003-4819-158-4-201302190-00004
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594. https://doi.org/10.4065/83.5.584
Mori M, Rao SK, Popper HH, Cagle PT, Fraire AE (2001) Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Mod Pathol 14(2):72–84. https://doi.org/10.1038/modpathol.3880259
Article CAS PubMed Google Scholar
Tsutani Y, Miyata Y, Mimae T, Kushitani K, Takeshima Y, Yoshimura M et al (2013) The prognostic role of pathologic invasive component size, excluding lepidic growth, in stage I lung adenocarcinoma. J Thorac Cardiovasc Surg 146(3):580–585. https://doi.org/10.1016/j.jtcvs.2013.04.032
Borczuk AC, Qian F, Kazeros A, Eleazar J, Assaad A, Sonett JR et al (2009) Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol 33(3):462–469. https://doi.org/10.1097/PAS.0b013e318190157c
Article PubMed PubMed Central Google Scholar
Chiu HY, Chao HS, Chen YM (2022) Application of artificial intelligence in lung cancer. Cancers (Basel) 14(6):1370. https://doi.org/10.3390/cancers14061370
Article CAS PubMed Google Scholar
Al Mohammad B, Brennan PC, Mello-Thoms C (2017) A review of lung cancer screening and the role of computer-aided detection. Clin Radiol 72(6):433–442. https://doi.org/10.1016/j.crad.2017.01.002
Article CAS PubMed Google Scholar
Wang S, Zhou M, Liu Z, Liu Z, Gu D, Zang Y et al (2017) Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med Image Anal 40:172–183. https://doi.org/10.1016/j.media.2017.06.014
Article PubMed PubMed Central Google Scholar
Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C et al (2017) Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep 7:46479. https://doi.org/10.1038/srep46479
Article CAS PubMed PubMed Central Google Scholar
Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L et al (2019) End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 25(6):954–961. https://doi.org/10.1038/s41591-019-0447-x
Article CAS PubMed Google Scholar
Tunali I, Gillies RJ, Schabath MB (2021) Application of radiomics and artificial intelligence for lung cancer precision medicine. Cold Spring Harb Perspect Med 11(8):a039537. https://doi.org/10.1101/cshperspect.a039537
Article CAS PubMed PubMed Central Google Scholar
Fan L, Fang M, Li Z, Tu W, Wang S, Chen W et al (2019) Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule. Eur Radiol 29(2):889–897. https://doi.org/10.1007/s00330-018-5530-z
Li D, Mikela Vilmun B, Frederik Carlsen J, Albrecht-Beste E, Ammitzbøl Lauridsen C, Bachmann Nielsen M et al (2019) The performance of deep learning algorithms on automatic pulmonary nodule detection and classification tested on different datasets that are not derived from LIDC-IDRI: a systematic review. Diagnostics (Basel) 9(4):207. https://doi.org/10.3390/diagnostics9040207
Liu X, Hou F, Qin H, Hao A (2018) Multi-view multi-scale CNNs for lung nodule type classification from CT images. Pattern Recogn 77:262–275. https://doi.org/10.1016/j.patcog.2017.12.022
Ashraf SF, Yin K, Meng CX, Wang Q, Wang Q, Pu J et al (2022) Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning. J Thorac Cardiovasc Surg 163(4):1496-1505.e1410. https://doi.org/10.1016/j.jtcvs.2021.02.010
Naik A, Edla DR (2021) Lung nodule classification on computed tomography images using deep learning. Wireless Pers Commun 116(1):655–690. https://doi.org/10.1007/s11277-020-07732-1
Wan YL, Wu PW, Huang PC, Tsay PK, Pan KT, Trang NN et al (2020) The use of artificial intelligence in the differentiation of malignant and benign lung nodules on computed tomograms proven by surgical pathology. Cancers (Basel) 12(8):2211. https://doi.org/10.3390/cancers12082211
Tran GS, Nghiem TP, Nguyen VT, Luong CM, Burie JC (2019) Improving accuracy of lung nodule classification using deep learning with focal loss. J Healthc Eng 2019:5156416. https://doi.org/10.1155/2019/5156416
Article PubMed PubMed Central Google Scholar
Zhao W, Yang J, Sun Y, Li C, Wu W, Jin L et al (2018) 3D Deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas. Cancer Res 78(24):6881–6889. https://doi.org/10.1158/0008-5472.Can-18-0696
Article CAS PubMed Google Scholar
Hu Z, Tang J, Wang Z, Zhang K, Zhang L, Sun Q (2018) Deep learning for image-based cancer detection and diagnosis−a survey. Pattern Recogn 83:134–149. https://doi.org/10.1016/j.patcog.2018.05.014
Setio AAA, Traverso A, de Bel T, Berens MSN, Bogaard CVD, Cerello P et al (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13. https://doi.org/10.1016/j.media.2017.06.015
Kim L, Kim KH, Yoon YH, Ryu JS, Choi SJ, Park IS et al (2012) Clinicopathologic and molecular characteristics of lung adenocarcinoma arising in young patients. J Korean Med Sci 27(9):1027–1036. https://doi.org/10.3346/jkms.2012.27.9.1027
Article PubMed PubMed Central Google Scholar
Pinsky PF, Berg CD (2012) Applying the national lung screening trial eligibility criteria to the US population: what percent of the population and of incident lung cancers would be covered? J Med Screen 19(3):154–156. https://doi.org/10.1258/jms.2012.012010
Hu Y, Chen G (2015) Pathogenic mechanisms of lung adenocarcinoma in smokers and non-smokers determined by gene expression interrogation. Oncol Lett 10(3):1350–1370. https://doi.org/10.3892/ol.2015.3462
Article CAS PubMed PubMed Central Google Scholar
Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91(14):1194–1210. https://doi.org/10.1093/jnci/91.14.1194
Comments (0)