Combined model integrating deep learning, radiomics, and clinical data to classify lung nodules at chest CT

Force USPST, Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M et al (2021) Screening for lung cancer: us preventive services task force recommendation statement. JAMA 325(10):962–970. https://doi.org/10.1001/jama.2021.1117

Article  Google Scholar 

Oudkerk M, Liu S, Heuvelmans MA, Walter JE, Field JK (2021) Lung cancer LDCT screening and mortality reduction–evidence, pitfalls and future perspectives. Nat Rev Clin Oncol 18(3):135–151. https://doi.org/10.1038/s41571-020-00432-6

Article  PubMed  Google Scholar 

Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409. https://doi.org/10.1056/NEJMoa1102873

Article  PubMed  Google Scholar 

Gao W, Wen CP, Wu A, Welch HG (2022) Association of computed tomographic screening promotion with lung cancer overdiagnosis among asian women. JAMA Intern Med 182(3):283–290. https://doi.org/10.1001/jamainternmed.2021.7769

Article  PubMed  Google Scholar 

Meza R, Jeon J, Toumazis I, Ten Haaf K, Cao P, Bastani M et al (2021) Evaluation of the benefits and harms of lung cancer screening with low-dose computed tomography: modeling study for the US preventive services task force. JAMA 325(10):988–997. https://doi.org/10.1001/jama.2021.1077

Article  PubMed  PubMed Central  Google Scholar 

Lin CY, Chang CC, Huang LT, Chung TJ, Liu YS, Yen YT et al (2021) Computed tomography-guided methylene blue localization: single vs. multiple lung nodules. Front Med (Lausanne) 8:661956. https://doi.org/10.3389/fmed.2021.661956

Article  PubMed  PubMed Central  Google Scholar 

Mazzone PJ, Lam L (2022) Evaluating the patient with a pulmonary nodule: a review. JAMA 327(3):264–273. https://doi.org/10.1001/jama.2021.24287

Article  PubMed  Google Scholar 

de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA et al (2020) Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med 382(6):503–513. https://doi.org/10.1056/NEJMoa1911793

Article  PubMed  Google Scholar 

Ost DE, Gould MK (2012) Decision making in patients with pulmonary nodules. Am J Respir Crit Care Med 185(4):363–372. https://doi.org/10.1164/rccm.201104-0679CI

Article  PubMed  PubMed Central  Google Scholar 

McKee BJ, Regis SM, McKee AB, Flacke S, Wald C (2015) Performance of ACR Lung-RADS in a clinical CT lung screening program. J Am Coll Radiol 12(3):273–276. https://doi.org/10.1016/j.jacr.2014.08.004

Article  PubMed  Google Scholar 

Henschke CI, Yip R, Yankelevitz DF, Smith JP (2013) Definition of a positive test result in computed tomography screening for lung cancer: a cohort study. Ann Intern Med 158(4):246–252. https://doi.org/10.7326/0003-4819-158-4-201302190-00004

Article  PubMed  Google Scholar 

Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594. https://doi.org/10.4065/83.5.584

Article  PubMed  Google Scholar 

Mori M, Rao SK, Popper HH, Cagle PT, Fraire AE (2001) Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Mod Pathol 14(2):72–84. https://doi.org/10.1038/modpathol.3880259

Article  CAS  PubMed  Google Scholar 

Tsutani Y, Miyata Y, Mimae T, Kushitani K, Takeshima Y, Yoshimura M et al (2013) The prognostic role of pathologic invasive component size, excluding lepidic growth, in stage I lung adenocarcinoma. J Thorac Cardiovasc Surg 146(3):580–585. https://doi.org/10.1016/j.jtcvs.2013.04.032

Article  PubMed  Google Scholar 

Borczuk AC, Qian F, Kazeros A, Eleazar J, Assaad A, Sonett JR et al (2009) Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol 33(3):462–469. https://doi.org/10.1097/PAS.0b013e318190157c

Article  PubMed  PubMed Central  Google Scholar 

Chiu HY, Chao HS, Chen YM (2022) Application of artificial intelligence in lung cancer. Cancers (Basel) 14(6):1370. https://doi.org/10.3390/cancers14061370

Article  CAS  PubMed  Google Scholar 

Al Mohammad B, Brennan PC, Mello-Thoms C (2017) A review of lung cancer screening and the role of computer-aided detection. Clin Radiol 72(6):433–442. https://doi.org/10.1016/j.crad.2017.01.002

Article  CAS  PubMed  Google Scholar 

Wang S, Zhou M, Liu Z, Liu Z, Gu D, Zang Y et al (2017) Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med Image Anal 40:172–183. https://doi.org/10.1016/j.media.2017.06.014

Article  PubMed  PubMed Central  Google Scholar 

Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C et al (2017) Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep 7:46479. https://doi.org/10.1038/srep46479

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L et al (2019) End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 25(6):954–961. https://doi.org/10.1038/s41591-019-0447-x

Article  CAS  PubMed  Google Scholar 

Tunali I, Gillies RJ, Schabath MB (2021) Application of radiomics and artificial intelligence for lung cancer precision medicine. Cold Spring Harb Perspect Med 11(8):a039537. https://doi.org/10.1101/cshperspect.a039537

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan L, Fang M, Li Z, Tu W, Wang S, Chen W et al (2019) Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule. Eur Radiol 29(2):889–897. https://doi.org/10.1007/s00330-018-5530-z

Article  PubMed  Google Scholar 

Li D, Mikela Vilmun B, Frederik Carlsen J, Albrecht-Beste E, Ammitzbøl Lauridsen C, Bachmann Nielsen M et al (2019) The performance of deep learning algorithms on automatic pulmonary nodule detection and classification tested on different datasets that are not derived from LIDC-IDRI: a systematic review. Diagnostics (Basel) 9(4):207. https://doi.org/10.3390/diagnostics9040207

Article  PubMed  Google Scholar 

Liu X, Hou F, Qin H, Hao A (2018) Multi-view multi-scale CNNs for lung nodule type classification from CT images. Pattern Recogn 77:262–275. https://doi.org/10.1016/j.patcog.2017.12.022

Article  Google Scholar 

Ashraf SF, Yin K, Meng CX, Wang Q, Wang Q, Pu J et al (2022) Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning. J Thorac Cardiovasc Surg 163(4):1496-1505.e1410. https://doi.org/10.1016/j.jtcvs.2021.02.010

Article  PubMed  Google Scholar 

Naik A, Edla DR (2021) Lung nodule classification on computed tomography images using deep learning. Wireless Pers Commun 116(1):655–690. https://doi.org/10.1007/s11277-020-07732-1

Article  Google Scholar 

Wan YL, Wu PW, Huang PC, Tsay PK, Pan KT, Trang NN et al (2020) The use of artificial intelligence in the differentiation of malignant and benign lung nodules on computed tomograms proven by surgical pathology. Cancers (Basel) 12(8):2211. https://doi.org/10.3390/cancers12082211

Article  PubMed  Google Scholar 

Tran GS, Nghiem TP, Nguyen VT, Luong CM, Burie JC (2019) Improving accuracy of lung nodule classification using deep learning with focal loss. J Healthc Eng 2019:5156416. https://doi.org/10.1155/2019/5156416

Article  PubMed  PubMed Central  Google Scholar 

Zhao W, Yang J, Sun Y, Li C, Wu W, Jin L et al (2018) 3D Deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas. Cancer Res 78(24):6881–6889. https://doi.org/10.1158/0008-5472.Can-18-0696

Article  CAS  PubMed  Google Scholar 

Hu Z, Tang J, Wang Z, Zhang K, Zhang L, Sun Q (2018) Deep learning for image-based cancer detection and diagnosis−a survey. Pattern Recogn 83:134–149. https://doi.org/10.1016/j.patcog.2018.05.014

Article  Google Scholar 

Setio AAA, Traverso A, de Bel T, Berens MSN, Bogaard CVD, Cerello P et al (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13. https://doi.org/10.1016/j.media.2017.06.015

Article  PubMed  Google Scholar 

Kim L, Kim KH, Yoon YH, Ryu JS, Choi SJ, Park IS et al (2012) Clinicopathologic and molecular characteristics of lung adenocarcinoma arising in young patients. J Korean Med Sci 27(9):1027–1036. https://doi.org/10.3346/jkms.2012.27.9.1027

Article  PubMed  PubMed Central  Google Scholar 

Pinsky PF, Berg CD (2012) Applying the national lung screening trial eligibility criteria to the US population: what percent of the population and of incident lung cancers would be covered? J Med Screen 19(3):154–156. https://doi.org/10.1258/jms.2012.012010

Article  PubMed  Google Scholar 

Hu Y, Chen G (2015) Pathogenic mechanisms of lung adenocarcinoma in smokers and non-smokers determined by gene expression interrogation. Oncol Lett 10(3):1350–1370. https://doi.org/10.3892/ol.2015.3462

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91(14):1194–1210. https://doi.org/10.1093/jnci/91.14.1194

Comments (0)

No login
gif