Design of auditory P300-based brain-computer interfaces with a single auditory channel and no visual support

Baykara E, Ruf CA, Fioravanti C et al (2016) Effects of training and motivation on auditory P300 brain-computer interface performance. Clin Neurophysiol 127:379–387. https://doi.org/10.1016/j.clinph.2015.04.054

Article  PubMed  CAS  Google Scholar 

Belitski A, Farquhar J, Desain P (2011) P300 audio-visual speller. J Neural Eng. https://doi.org/10.1088/1741-2560/8/2/025022

Article  PubMed  Google Scholar 

Bigdely-Shamlo N, Mullen T, Kothe C et al (2015) The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front Neuroinform. https://doi.org/10.3389/fninf.2015.00016

Article  PubMed  PubMed Central  Google Scholar 

Birbaumer N, Cohen LG (2007) Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol 579:621–636. https://doi.org/10.1113/jphysiol.2006.125633

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carabalona R, Grossi F, Tessadri A et al (2010) Home smart home: Brain-computer interface control for real smart home environments. In: Proceedings of the 4th international convention on rehabilitation engineering & assistive technology. Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre, p 51

Chang M, Nishikawa N, Struzik ZR et al (2013) Comparison of P300 responses in auditory, visual and audiovisual spatial speller BCI paradigms. arXiv preprint http://arxiv.org/abs/1301.6360

Chang CY, Hsu SH, Pion-Tonachini L et al (2020) Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Trans Bio-Med Eng 67:1114–1121. https://doi.org/10.1109/Tbme.2019.2930186

Article  Google Scholar 

Cheng SY, Hsu HT, Shu CM (2008) Effects of control button arrangements on human response to auditory and visual signals. J Loss Prevent Proc 21:299–306. https://doi.org/10.1016/j.jlp.2007.03.002

Article  Google Scholar 

Corralejo R, Nicolás-Alonso LF, Álvarez D et al (2014) A P300-based brain–computer interface aimed at operating electronic devices at home for severely disabled people. Med Biol Eng Compu 52:861–872

Article  Google Scholar 

De Vos M, Kroesen M, Emkes R et al (2014) P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier. J Neural Eng 11:036008. https://doi.org/10.1088/1741-2560/11/3/036008

Article  PubMed  Google Scholar 

Donchin E, Ritter W, McCallum WC (1978) Cognitive psychophysiology: the endogenous components of the ERP. Event-Relat Brain Potentials Man 349:411

Google Scholar 

Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523. https://doi.org/10.1016/0013-4694(88)90149-6

Article  PubMed  CAS  Google Scholar 

Ferracuti F, Freddi A, Iarlori S et al (2013) Auditory paradigm for a P300 BCI system using spatial hearing. In: IEEE international conference on intelligent robots, pp 871–876

Furdea A, Halder S, Krusienski DJ et al (2009) An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46:617–625. https://doi.org/10.1111/j.1469-8986.2008.00783.x

Article  PubMed  CAS  Google Scholar 

Halder S, Rea M, Andreoni R et al (2010) An auditory oddball brain-computer interface for binary choices. Clin Neurophysiol 121:516–523. https://doi.org/10.1016/j.clinph.2009.11.087

Article  PubMed  CAS  Google Scholar 

Halder S, Kathner I, Kubler A (2016) Training leads to increased auditory brain-computer interface performance of end-users with motor impairments. Clin Neurophysiol 127:1288–1296. https://doi.org/10.1016/j.clinph.2015.08.007

Article  PubMed  CAS  Google Scholar 

Harvey DG, Torack RM, Rosenbaum HE (1979) Amyotrophic lateral sclerosis with ophthalmoplegia—clinicopathologic study. Arch Neurol-Chicago 36:615–617. https://doi.org/10.1001/archneur.1979.00500460049005

Article  PubMed  CAS  Google Scholar 

Hayashi H, Kato S (1989) Total manifestations of amyotrophic lateral sclerosis—ALS in the totally locked-in state. J Neurol Sci 93:19–35. https://doi.org/10.1016/0022-510x(89)90158-5

Article  PubMed  CAS  Google Scholar 

Höhne J, Schreuder M, Blankertz B et al (2011) A Novel 9-class auditory ERP paradigm driving a predictive text entry system. Front Neurosci 5:99. https://doi.org/10.3389/fnins.2011.00099

Article  PubMed  PubMed Central  Google Scholar 

Höhne J, Krenzlin K, Dahne S et al (2012) Natural stimuli improve auditory BCIs with respect to ergonomics and performance. J Neural Eng. https://doi.org/10.1088/1741-2560/9/4/045003

Article  PubMed  Google Scholar 

Huang MQ, Jin J, Zhang Y et al (2018) Usage of drip drops as stimuli in an auditory P300 BCI paradigm. Cogn Neurodyn 12:85–94. https://doi.org/10.1007/s11571-017-9456-y

Article  PubMed  Google Scholar 

Katayama J, Polich J (1996) P300 from one-, two-, and three-stimulus auditory paradigms. Int J Psychophysiol 23:33–40. https://doi.org/10.1016/0167-8760(96)00030-X

Article  PubMed  CAS  Google Scholar 

Kim M, Kim MK, Hwang M et al (2019) Online Home appliance control using EEG-based brain–computer interfaces. Electronics. https://doi.org/10.3390/electronics8101101

Article  Google Scholar 

Klobassa DS, Vaughan TM, Brunner P et al (2009) Toward a high-throughput auditory P300-based brain-computer interface. Clin Neurophysiol 120:1252–1261. https://doi.org/10.1016/j.clinph.2009.04.019

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kübler A, Birbaumer N (2008) Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 119:2658–2666. https://doi.org/10.1016/j.clinph.2008.06.019

Article  PubMed  PubMed Central  Google Scholar 

Mullen TR, Kothe CAE, Chi YM et al (2015) Real-time neuroimaging and cognitive monitoring using wearable Dry EEG. IEEE Trans Bio-Med Eng 62:2553–2567. https://doi.org/10.1109/Tbme.2015.2481482

Article  Google Scholar 

Ng AWY, Chan AHS (2012) Finger response times to visual, auditory and tactile modality stimuli. Lect Notes Eng Comput 2:1449–1454

Google Scholar 

Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12:1211–1279. https://doi.org/10.3390/s120201211

Article  PubMed  PubMed Central  Google Scholar 

Oralhan Z (2019) A new paradigm for region-based P300 speller in brain computer interface. IEEE Access 7:106617–106626. https://doi.org/10.1109/Access.2019.2933049

Article  Google Scholar 

Sara G, Gordon E, Kraiuhin C et al (1994) The P300 ERP component: an index of cognitive dysfunction in depression? J Affect Disord 31:29–38. https://doi.org/10.1016/0165-0327(94)90124-4

Article  PubMed  CAS  Google Scholar 

Schmidt-Kassow M, Wilkinson D, Denby E et al (2016) Synchronised vestibular signals increase the P300 event-related potential elicited by auditory oddballs. Brain Res 1648:224–231. https://doi.org/10.1016/j.brainres.2016.07.019

Article  PubMed  CAS  Google Scholar 

Schreuder M, Blankertz B, Tangermann M (2010) A New auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PLoS ONE. https://doi.org/10.1371/journal.pone.0009813

Article  PubMed  PubMed Central  Google Scholar 

Si-Mohammed H, Petit J, Jeunet C et al (2020) Towards BCI-based interfaces for augmented reality: feasibility, design and evaluation. IEEE Trans vis Comput Graph 26:1608–1621. https://doi.org/10.1109/Tvcg.2018.2873737

Article  PubMed  Google Scholar 

Simon N, Kathner I, Ruf CA et al (2015) An auditory multiclass brain-computer interface with natural stimuli: usability evaluation with healthy participants and a motor impaired end user. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2014.01039

Article  PubMed  PubMed Central  Google Scholar 

Takano K, Hata N, Kansaku K (2011) Towards intelligent environments: an augmented reality-brain-machine interface operated with a see-through head-mount display. Front Neurosci. https://doi.org/10.3389/fnins.2011.00060

Article  PubMed  PubMed Central  Google Scholar 

Wolpaw JR, Birbaumer N, McFarland DJ et al (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791. https://doi.org/10.1016/s1388-2457(02)0005

Article  PubMed  Google Scholar 

Zaehle T, Wustenberg T, Meyer M et al (2004) Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study. Eur J Neurosci 20:2447–2456. https://doi.org/10.1111/j.1460-9568.2004.03687.x

Article  PubMed  CAS  Google Scholar 

Zander TO, Kothe C (2011) Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J Neural Eng 8:025005. https://doi.org/10.1088/1741-2560/8/2/025005

Article  PubMed  Google Scholar 

Zeng H, Wang YX, Wu CC et al (2017) Closed-loop hybrid gaze brain-machine interface based robotic arm control with augmented reality feedback. Front Neurorobotics. https://doi.org/10.3389/fnbot.2017.00060

Article  Google Scholar 

留言 (0)

沒有登入
gif