Fast Clustering for Cooperative Perception Based on LiDAR Adaptive Dynamic Grid Encoding

Khatab E, Onsy A, Varley M, Abouelfarag A. Vulnerable objects detection for autonomous driving: a review. Integration. 2021;78:36–48.

Article  Google Scholar 

Su Z, Hui Y, Luan TH, Liu Q, Xing R. Deep learning based autonomous driving in vehicular networks. 2020. p. 131–50.

Tsukada M, Oi T, Ito A, Hirata M, Esaki H. AutoC2X: open-source software to realize V2X cooperative perception among autonomous vehicles. In: 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). 2020. p. 1–6.

Cui G, Zhang W, Xiao Y, Yao L, Fang Z. Cooperative perception technology of autonomous driving in the internet of vehicles environment: a review. Sensors. 2022;22(15).

Xu R, Guo Y, Han X, Xia X, Xiang H, Ma J. OpenCDA: an open cooperative driving automation framework integrated with co-simulation. CoRR. abs/2107.06260. 2021.

Qian C, Zhang H, Li W, Tang J, Liu H, Li B. Cooperative GNSS-RTK ambiguity resolution with GNSS, INS, and LiDAR data for connected vehicles. Remote Sens. 2020;12(6).

Zeng Y, Qin H, Wang K, Li Q. A survey of LiDAR-based perception for autonomous driving: from detection to segmentation. IEEE Trans Intell Transp Syst. 2021;22(1):449–69.

Google Scholar 

Yuan C, Lyu L, Sun H, Li X. LiDAR-based pedestrian detection in autonomous driving: recent advances and future research directions. IEEE Trans Intell Transp Syst. 2021;22(1):2–19.

Google Scholar 

Zhang Z, Han S, Yi H, Duan F, Kang F, Sun Z, Solé-Casals J, Caiafa C. A brain-controlled vehicle system based on steady state visual evoked potentials. Cognit Comput. 2022.

An Y, Shi J, Gu D, Liu Q. Visual-LiDAR SLAM based on unsupervised multi-channel deep neural networks. Cogn Comput. 2022;14(4):1496–508.

Article  Google Scholar 

Yumer E, Abdel-Qader Y. Multi-vehicle cooperative perception using LiDAR: a comprehensive review and future directions. IEEE Trans Intell Veh. 2021;6(2):164–81.

Google Scholar 

Abdel-Qader Y, Yumer E. Multi-vehicle cooperative perception using LiDAR: low-level fusion, feature-level fusion, and high-level fusion. Sensors. 2021;21(6):2114.

Google Scholar 

Nguyen C, de Lucas M, Dario P. Multi-vehicle cooperative perception using LiDAR-based low-level sensor fusion and graph optimization. Robot Autonom Syst. 2021;143:104235.

Google Scholar 

Liu K, Huang Y, Zhao F, Wang Z. Cooperative perception for autonomous vehicles using LiDAR and V2X communication. IEEE Trans Veh Technol. 2020;69(3):2821–33.

Google Scholar 

Zhang C, Zhang X, Wang B. A feature-level fusion approach for multi-vehicle cooperative perception using LiDAR and radar sensors. Sens Actuators A. 2023;324:112859.

Google Scholar 

Chen Q, Zhang J, Chen R, Shen W. Multi-vehicle cooperative perception and localization based on high-level fusion of LiDAR and map data. J Adv Transport. 2022.

Zhao J, Chen Q, Shen W. Multi-vehicle cooperative perception and localization based on high-level fusion of LiDAR and camera data. In: Proceedings of the 15th International Conference on Machine Vision (ICMV 2022); 2022. vol. 8934, p. 893401.

Pratibha C, Kumar A, Kamboj V. Partition-based clustering for real-time processing of LiDAR point clouds in autonomous vehicles. Sensors. 2021;21(9):3083.

Google Scholar 

Shang R, Ara B, Zada I, Nazir S, Ullah Z, Khan SU. Analysis of simple k-mean and parallel k-mean clustering for software products and organizational performance using education sector dataset. Sci Program. 2021;1–20:2021.

Google Scholar 

Daniel K, Friedrich F. Cognitive clustering of traffic scenarios for autonomous driving. In: IEEE Transactions on Intelligent Transportation Systems, vol. 21. 2020.

Liu S, Wang Y, Zhang T, Huang H. Real-time multi-LiDAR-based dynamic object detection with hierarchical clustering. IEEE Trans Intell Veh. 2021;6(2):148–58.

Google Scholar 

Zhang X, Zhang L, Zhang Y, Yingjie W, Jiao L. A cognitive hierarchical clustering algorithm for object detection on autonomous driving scenes. IEEE Access. 2020;8:99216–26.

Google Scholar 

Yoo S, Kim S, Kim K. A novel distance-based clustering algorithm for LiDAR point cloud in autonomous driving systems. Sensors. 2021;21(8):2896.

Google Scholar 

Lin C, Yu W. Real-time obstacle detection and avoidance for autonomous vehicles using LiDAR and distance-based clustering algorithm. In: 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), IEEE; 2020. p. 963–7.

Ester M, Kriegel H-P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, AAAI Press; 1996. p. 226–31.

Yoon H, Jeong J, Jang M, Kim J, Lee K, Lee S. Cognitive-based cluster analysis for improving object detection performance in autonomous vehicles. IEEE Trans Intell Transp Syst. 2019;20(7):2718–30.

Google Scholar 

Li S-S. An improved DBSCAN algorithm based on the neighbor similarity and fast nearest neighbor query. IEEE Access. 2020;8:47468–76.

Article  Google Scholar 

Chen W, Li C, Huang F, Liu Y, El-Sheimy N. Efficient real-time detection of pedestrians using 3D LiDAR and grid-based clustering algorithm. IEEE Trans Veh Technol. 2021;70(9):8833–43.

Google Scholar 

Yang H, Wang Z, Lin L, Liang H, Huang W, Xu F. Two-layer-graph clustering for real-time 3D LiDAR point cloud segmentation. Appl Sci. 2020;10(23):11.

Article  Google Scholar 

Klasing K, Wollherr D, Buss M. A clustering method for efficient segmentation of 3D laser data. In: 2008 IEEE International Conference on Robotics and Automation. 2008. p. 4043–8.

Zhu L, Zhang K, Ma L, Liu W. Cognitive inspired clustering for scene segmentation in autonomous driving. IEEE Trans Intell Transp Syst. 2019;20(2):596–606.

Google Scholar 

Li Y, Zhang K, Zhu L, Liu W. A cognitive clustering algorithm for multi-layer object detection in autonomous driving. IEEE Trans Intell Transp Syst. 2019;21(4):1672–82.

Google Scholar 

Rajamäki J, Mademlis I, Riekki J. A cognitive architecture for multi-vehicle cooperative perception. IEEE Trans Cognit Develop Syst. 2017;9(3):241–53.

Google Scholar 

Hurl B, Cohen R, Czarnecki K, Waslander S. TruPercept: trust modelling for autonomous vehicle cooperative perception from synthetic data. In: 2020 IEEE Intelligent Vehicles Symposium (IV). 2020. p. 341–7.

Duan X, Jiang H, Tian D, Zou T, Zhou J, Cao Y. V2I based environment perception for autonomous vehicles at intersections. China Commun. 2021;18(7):1–12.

Article  Google Scholar 

Chen Q, Tang S, Hochstetler J, Guo J, Li Y, Xiong J, Yang Q, Fu S. Low-latency high-level data sharing for connected and autonomous vehicular networks. In: 2019 IEEE International Conference on Industrial Internet (ICII). 2019. p. 287–96.

Metzner A, Wickramarathne T. Exploiting vehicle-to-vehicle communications for enhanced situational awareness. In: 2019 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). 2019. p. 88–92.

Xu R, Xiang H, Xia X, Han X, Liu J, Ma J. OPV2V: an open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. CoRR. abs/2109.07644. 2021.

Ma Y, Liu Y, Dai M, Yang Y. A LiDAR based height difference threshold segmentation method for ground extraction in autonomous driving. Sensors. 2021;21(7):2569.

Google Scholar 

Guo H, Wang Y, Mao K, Li T, Zhou J, Mao J. Ground feature extraction from LiDAR data using height difference threshold segmentation. Remote Sens Lett. 2022;13(4):382–90.

Google Scholar 

Li C, Zhang X, Zhao Q, Tong X. Improved height difference threshold segmentation method for LiDAR-based ground extraction. Remote Sens. 2023;15(2):389.

Google Scholar 

Shen Z, Liang H, Lin L, Wang Z, Huang W, Yu J. Fast ground segmentation for 3D LiDAR point cloud based on jump-convolution-process. Remote Sens. 2021;13(16).

Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics. 1969;11(1):1–21.

Article  Google Scholar 

留言 (0)

沒有登入
gif