Osthole inhibits GSK-3β/AMPK/mTOR pathway-controlled glycolysis and increases radiosensitivity of subcutaneous transplanted hepatocellular carcinoma in nude mice

Wang L, Li J, Di LJ (2022) Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 42:946–982

Article  CAS  PubMed  Google Scholar 

Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, McCubrey JA, Cervello M (2020) GSK‑3 in liver diseases: friend or foe? Biochim Biophys Acta Mol Cell Res 1867:118743

Article  CAS  PubMed  Google Scholar 

Zhang N, Liu XJ, Liu L, Deng ZS, Zeng QX, Pang WQ, Liu Y, Song DQ, Deng HB (2018) Glycogen synthase kinase-3beta inhibition promotes lysosome-dependent degradation of c‑FLIPL in hepatocellular carcinoma. Cell Death Dis 9:230

Article  PubMed  PubMed Central  Google Scholar 

Fang GX, Zhang PL, Liu JF, Zhang X, Zhu XJ, Li R, Wang HY (2019) Inhibition of GSK-3β activity suppresses HCC malignant phenotype by inhibiting glycolysis via activating AMPK/mTOR signaling. Cancer Lett 463:11–26

Article  CAS  PubMed  Google Scholar 

Tang L, Wei F, Wu YF, He Y, Shi L, Xiong F, Gong ZJ, Guo C, Li XY, Deng H, Cao K, Zhou M, Xiang B, Li XL, Li Y, Li GY, Xiong W, Zeng ZY (2018) Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res 37:87

Article  PubMed  PubMed Central  Google Scholar 

Vogel A, Cervantes A, Chau I, Daniele B, Llovet JM, Meyer T, Nault JC, Neumann U, Ricke J, Sangro B, Schirmacher P, Verslype C, Zech CJ, Arnold D, Martinelli E (2018) Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 29(iv238):iv255

Google Scholar 

Shokoohinia Y, Jafari F, Mohammadi Z, Bazvandi L, Hosseinzadeh L, Chow N, Bhattacharyya P, Farzaei MH, Farooqi AA, Nabavi SM, Yerer MB, Bishayee A (2018) Potential anticancer properties of osthol: a comprehensive mechanistic review. Nutrients 10:36

Article  PubMed  PubMed Central  Google Scholar 

Ashrafizadeh M, Mohammadinejad R, Samarghandian S, Yaribeygi H, Johnston TP, Sahebkar A (2020) Anti-tumor effects of osthole on different malignant tissues: A review of molecular mechanisms. Anticancer Agents Med Chem 20:918–931

Article  CAS  PubMed  Google Scholar 

Chen YQ, Song HY, Zhou ZY, Ma J, Luo ZY, Zhou Y, Wang JY, Liu S, Han XH (2022) Osthole inhibits the migration and invasion of highly metastatic breast cancer cells by suppressing ITGα3/ITGβ5 signaling. Acta Pharmacol Sin 43:1544–1555

Article  CAS  PubMed  Google Scholar 

Dai XX, Yin CT, Zhang Y, Guo GL, Zhao CG, Wang OC, Xiang YQ, Zhang XH, Liang G (2018) Osthole inhibits triple negative breast cancer cells by suppressing STAT3. J Exp Clin Cancer Res 37:322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mo Y, Wu Y, Li X, Rao H, Tian XX, Wu DN, Qiu ZP, Zheng GH, Hu JJ (2020) Osthole delays hepatocarcinogenesis in mice by suppressing AKT/FASN axis and ERK phosphorylation. Eur J Pharmacol 867:172788

Article  CAS  PubMed  Google Scholar 

Lin ZK, Liu J, Jiang GQ, Tan G, Gong P, Luo HF, Li HM, Du J, Ning Z, Xin Y, Wang ZY (2017) Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncol Rep 37:1611–1618

Article  CAS  PubMed  Google Scholar 

Fan K, Huang H, Zhao Y, Xie T, Zhu ZY, Xie ML (2022) Osthole increases the sensitivity of liver cancer to sorafenib by inhibiting cholesterol metabolism. Nutr Cancer 74:3640–3650

Article  CAS  PubMed  Google Scholar 

Huang H, Xue J, Xie T, Xie ML (2023) Osthole increases the radiosensitivity of hepatoma cells by inhibiting GSK-3β/AMPK/mTOR pathway-controlled glycolysis. N‑S Arch. Pharmacol, vol 396, pp 683–692

Google Scholar 

Qi ZG, Zhao X, Zhong W, Xie ML (2016) Osthole improves glucose and lipid metabolism via modulation of PPARα/γ-mediated target gene expression in liver, adipose tissue, and skeletal muscle in fatty liver rats. Pharm Biol 54:882–888

Article  CAS  PubMed  Google Scholar 

Liu JC, Zhou L, Wang F, Cheng ZQ, Chen R (2018) Osthole decreases collagen I/III contents and their ratio in TGF-beta 1‑overexpressed mouse cardiac fibroblasts through regulating the TGF-beta/Smad signaling pathway. Chin J Nat Med 16:321–329

CAS  PubMed  Google Scholar 

Jia CH, Zhao Y, Huang H, Fan K, Xie T, Xie ML (2022) Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis. J Nutr Biochem 107:109038

Article  CAS  PubMed  Google Scholar 

Yu L, Sun YF, Li JJ, Wang Y, Zhu YX, Shi Y, Fan XJ, Zhou JD, Bao Y, Xiao J, Cao K, Cao PG (2017) Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism. J Exp Clin Cancer Res 36:110

Article  PubMed  PubMed Central  Google Scholar 

Feng J, Li JJ, Wu LW, Yu Q, Ji J, Wu JY, Dai WQ, Guo CY (2020) Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 39:126

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng J, Dai WQ, Mao YQ, Wu LW, Li JJ, Chen K, Yu Q, Kong R, Li SN, Zhang J, Ji J, Wu JY, Mo WH, Xu XF, Guo CY (2020) Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res 39:24

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin YZ, Zhai H, Ouyang Y, Lu ZY, Chu CB, He QT, Cao XP (2019) Knockdown of PKM2 enhances radiosensitivity of cervical cancer cells. Cancer Cell Int 19:129

Article  PubMed  PubMed Central  Google Scholar 

Liu KX, Everdell E, Pal S, Haas-Kogan DA, Milligan MG (2021) Harnessing lactate metabolism for radiosensitization. Front Oncol 11:672339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beurel E, Blivet-Van Eggelpoel MJ, Kornprobst M, Moritz S, Delelo R, Paye F, Housset C, Desbois-Mouthon C (2009) Glycogen synthase kinase-3 inhibitors augment TRAIL-induced apoptotic death in human hepatoma cells. Biochem Pharmacol 77:54–65

Article  CAS  PubMed  Google Scholar 

Mamaghani S, Simpson CD, Cao PM, Cheung M, Chow S, Bandarchi B, Schimmer AD, Hedley DW (2012) Glycogen synthase kinase‑3 inhibition sensitizes pancreatic cancer cells to TRAIL-induced apoptosis. Plos One 7:e41102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pal K, Cao Y, Gaisina IN, Bhattacharya S, Dutta SK, Wang EF, Gunosewoyo H, Kozikowski AP, Billadeau DD, Mukhopadhyay D (2014) Inhibition of GSK‑3 induces differentiation and impaired glucose metabolism in renal cancer. Mol Cancer Ther 13:285–296

Article  CAS  PubMed  Google Scholar 

Lin JT, Song T, Li C, Mao WF (2020) GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res 1867:118659

Article  CAS  PubMed  Google Scholar 

Kitano A, Shimasaki T, Chikano Y, Nakada M, Hirose M, Higashi T, Ishigaki Y, Endo Y, Takino T, Sato H, Sai Y, Miyamoto K, Motoo Y, Kawakami K, Minamoto T (2013) Aberrant glycogen synthase kinase 3beta is involved in pancreatic cancer cell invasion and resistance to therapy. Plos One 8:e55289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abrams SL, Akula SM, Meher AK, Steelman LS, Gizak A, Duda P, Rakus D, Martelli AM, Ratti S, Cocco L, Montalto G, Cervello M, Ruvolo P, Libra M, Falzone L, Candido S, McCubrey JA (2021) GSK-3β can regulate the sensitivity of MIA-PaCa‑2 pancreatic and MCF‑7 breast cancer cells to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Cells 10:816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park W, Park S, Song G, Lim W (2019) Inhibitory effects of osthole on human breast cancer cell progression via induction of cell cycle arrest, mitochondrial dysfunction, and ER stress. Nutrients 11:2777

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu B, Jin JB, Zhang ZY, Zuo L, Jiang MX, Xie CF (2019) Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1 alpha signaling pathway. Biochm. Cell Biol 97:397–405

Google Scholar 

Zhang JH, Zhang YH, Mo F, Patel G, Butterworth K, Shao CL, Prise KM (2021) The roles of HIF‑1 alpha in radiosensitivity and radiation-induced bystander effects under hypoxia. Front Cell Dev Biol 9:637454

Article  PubMed  PubMed Central  Google Scholar 

Meng W, Xie BH, Yang Q, Jia CC, Tang H, Zhang XM, Zhang Y, Zhang JW, Li HP, Fu BS (2019) Minichromosome maintenance 3 promotes hepatocellular carcinoma radioresistance by activating the NF‑B pathway. J Exp Clin Cancer Res 38:263

Article  PubMed  PubMed Central  Google Scholar 

Liu WL, Gao M, Tzen KY, Tsai CL, Hsu FM, Cheng AL, Cheng JCH (2014) Targeting phosphatidylinositide 3‑kinase/Akt pathway by BKM120 for radiosensitization in hepatocellular carcinoma. Oncotarget 5:3662–3672

Article  PubMed  PubMed Central  Google Scholar 

Che YL, Li J, Li ZJ, Li J, Wang S, Yan Y, Zou K, Zou LJ (2018) Osthole enhances antitumor activity and irradiation sensitivity of cervical cancer cells by suppressing ATM/NF-κB signaling. Oncol Rep 40:737–747

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif