Simple model systems reveal conserved mechanisms of Alzheimer’s disease and related tauopathies

Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genomics. 2008;1:44.

Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet. 2014;5:279.

Article  PubMed  PubMed Central  Google Scholar 

Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation Induces Self-Assembly of Tau into Tangles of Paired Helical Filaments/Straight Filaments. Proc Natl Acad Sci USA. 2001;98(12):6923–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alvarez J, Alvarez-Illera P, Santo-Domingo J, Fonteriz RI, Montero M. Modeling Alzheimer’s Disease in Caenorhabditis elegans. Biomedicines. 2022; 10(2).

Annunziata I, Patterson A, Helton D, Hu H, Moshiach S, et al. Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat Commun. 2013;4:2734.

Article  PubMed  Google Scholar 

Antonova Simona V, et al. Chaperonin CCT checkpoint function in basal transcription factor TFIID assembly. Nat Struct Mol Biol. 2018;25(12):1119–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arber C, Toombs J, Lovejoy C, Ryan NS, Paterson RW, Willumsen N, Gkanatsiou E, et al. Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Mol Psychiatry. 2020;25(11):2919–31.

Article  PubMed  Google Scholar 

Astarita G, Jung K-M, Vasilevko V, Dipatrizio NV, Martin SK, et al. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer’s disease. PLoS One. 2011;6(10):e24777.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bagriantsev S, Liebman S. Modulation of Abeta42 low-n oligomerization using a novel yeast reporter system. BMC Biol. 2006;4:32.

Article  PubMed  PubMed Central  Google Scholar 

Baik IH, Jo G-H, Seo D, Ko MJ, Cho CH, et al. Knockdown of RPL9 expression inhibits colorectal carcinoma growth via the inactivation of Id-1/NF-κB signaling axis. Int J Oncol. 2016;49(5):1953–62.

Article  CAS  PubMed  Google Scholar 

Bao W-D, Pang P, Zhou X-T, Hu F, Xiong W, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 2021;28(5):1548–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bardai FH, Ordonez DG, Bailey RM, Hamm M, Lewis J, Feany MB. Lrrk promotes tau neurotoxicity through dysregulation of actin and mitochondrial dynamics. PLoS Biol. 2018;16(12):e2006265.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baughman HER, Clouser AF, Klevit RE, Nath A. HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation. J Biol Chem. 2018;293(8):2687–700.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272(33):20313–6.

Article  CAS  PubMed  Google Scholar 

Beton JG, Monistrol J, Wentink A, Johnston EC, Roberts AJ, Bukau BG, Hoogenboom BW, Saibil HR. Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase. EMBO J. 2022;41(16):e110410.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Björkdahl C, Sjögren MJ, Zhou X, Concha H, Avila J, et al. Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments. J Neurosci Res. 2008;86(6):1343–52.

Article  PubMed  Google Scholar 

Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, et al. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet. 2007;16(5):555–66.

Article  CAS  PubMed  Google Scholar 

Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8.

Article  PubMed  Google Scholar 

Bonet-Costa V, Pomatto LC-D, Davies KJA. The proteasome and oxidative stress in alzheimer’s disease. Antioxid Redox Signal. 2016;25(16):886–901.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyle EI, Weng S, Gollub J, Jin H, Botstein D, et al. GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20(18):3710–5.

Article  CAS  PubMed  Google Scholar 

Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer Disease-Associated Neurofibrillary Pathology Using Paraffin Sections and Immunocytochemistry. Acta Neuropathol. 2006;112(4):389–404.

Article  PubMed  PubMed Central  Google Scholar 

Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules (Basel, Switzerland). 2020;25(24)5789. https://doi.org/10.3390/molecules25245789.

Brandt R, Gergou A, Wacker I, Fath T, Hutter H. A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging. 2009;30(1):22–33.

Article  CAS  PubMed  Google Scholar 

Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C. Assembly and Aggregation Properties of Synthetic Alzheimer’s A4/Beta Amyloid Peptide Analogs. J Biol Chem. 1992;267(1):546–54.

Article  CAS  PubMed  Google Scholar 

Burnouf S, Grönke S, Augustin H, Dols J, Gorsky MK, Werner J, Kerr F, Alic N, Martinez P, Partridge L. Deletion of endogenous Tau proteins is not detrimental in Drosophila. Sci Rep. 2016;6:23102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cacho-Valadez B, Muñoz-Lobato F, Pedrajas JR, Cabello J, Fierro-González JC, et al. The characterization of the Caenorhabditis elegans mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in β-amyloid peptide toxicity. Antioxid Redox Signal. 2012;16(12):1384–400.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caine J, Sankovich S, Antony H, Waddington L, Macreadie P, et al. Alzheimer’s Abeta fused to green fluorescent protein induces growth stress and a heat shock response. FEMS Yeast Res. 2007;7(8):1230–6.

Article  CAS  PubMed  Google Scholar 

Caldeira GL, Ferreira IL, Rego AC. Impaired transcription in Alzheimer’s disease: key role in mitochondrial dysfunction and oxidative stress. J Alzheimers Dis. 2013;34(1):115–31.

Article  CAS  PubMed  Google Scholar 

Campanella C, Pace A, Caruso Bavisotto C, Marzullo P, Marino Gammazza A, et al. Heat shock proteins in alzheimer’s disease: role and targeting. Int J Mol Sci. 2018;19(9):2603. https://doi.org/10.3390/ijms19092603.

Cao W, Song H-J, Gangi T, Kelkar A, Antani I, et al. Identification of novel genes that modify phenotypes induced by Alzheimer’s beta-amyloid overexpression in Drosophila. Genetics. 2008;178(3):1457–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao W, Zheng H. Peripheral immune system in aging and Alzheimer’s disease. Mol Neurodegener. 2018;13(1):51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carmine-Simmen K, Proctor T, Tschäpe J, Poeck B, Triphan T, et al. Neurotoxic effects induced by the Drosophila amyloid-beta peptide suggest a conserved toxic function. Neurobiol Dis. 2009;33(2):274–81.

Article  CAS  PubMed  Google Scholar 

Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P. The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet. 2011;20(11):2144–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caspersen C, Wang N, Yao J, Sosunov A, Chen X, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005;19(14):2040–1.

Article  CAS  PubMed  Google Scholar 

Cassar M, Kretzschmar D. Analysis of amyloid precursor protein function in drosophila melanogaster. Front Mol Neurosci. 2016;9:61.

Article  PubMed  PubMed Central  Google Scholar 

Cha M-Y, Cho HJ, Kim C, Jung YO, Kang MJ, et al. Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer’s disease. Hum Mol Genet. 2015;24(22):6492–504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. Neurodegener Dis. 2012;9(2):68–80.

Article  CAS  PubMed 

Comments (0)

No login
gif