Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genomics. 2008;1:44.
Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet. 2014;5:279.
Article PubMed PubMed Central Google Scholar
Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation Induces Self-Assembly of Tau into Tangles of Paired Helical Filaments/Straight Filaments. Proc Natl Acad Sci USA. 2001;98(12):6923–8.
Article CAS PubMed PubMed Central Google Scholar
Alvarez J, Alvarez-Illera P, Santo-Domingo J, Fonteriz RI, Montero M. Modeling Alzheimer’s Disease in Caenorhabditis elegans. Biomedicines. 2022; 10(2).
Annunziata I, Patterson A, Helton D, Hu H, Moshiach S, et al. Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat Commun. 2013;4:2734.
Antonova Simona V, et al. Chaperonin CCT checkpoint function in basal transcription factor TFIID assembly. Nat Struct Mol Biol. 2018;25(12):1119–27.
Article CAS PubMed PubMed Central Google Scholar
Arber C, Toombs J, Lovejoy C, Ryan NS, Paterson RW, Willumsen N, Gkanatsiou E, et al. Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Mol Psychiatry. 2020;25(11):2919–31.
Astarita G, Jung K-M, Vasilevko V, Dipatrizio NV, Martin SK, et al. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer’s disease. PLoS One. 2011;6(10):e24777.
Article CAS PubMed PubMed Central Google Scholar
Bagriantsev S, Liebman S. Modulation of Abeta42 low-n oligomerization using a novel yeast reporter system. BMC Biol. 2006;4:32.
Article PubMed PubMed Central Google Scholar
Baik IH, Jo G-H, Seo D, Ko MJ, Cho CH, et al. Knockdown of RPL9 expression inhibits colorectal carcinoma growth via the inactivation of Id-1/NF-κB signaling axis. Int J Oncol. 2016;49(5):1953–62.
Article CAS PubMed Google Scholar
Bao W-D, Pang P, Zhou X-T, Hu F, Xiong W, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 2021;28(5):1548–62.
Article CAS PubMed PubMed Central Google Scholar
Bardai FH, Ordonez DG, Bailey RM, Hamm M, Lewis J, Feany MB. Lrrk promotes tau neurotoxicity through dysregulation of actin and mitochondrial dynamics. PLoS Biol. 2018;16(12):e2006265.
Article CAS PubMed PubMed Central Google Scholar
Baughman HER, Clouser AF, Klevit RE, Nath A. HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation. J Biol Chem. 2018;293(8):2687–700.
Article CAS PubMed PubMed Central Google Scholar
Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272(33):20313–6.
Article CAS PubMed Google Scholar
Beton JG, Monistrol J, Wentink A, Johnston EC, Roberts AJ, Bukau BG, Hoogenboom BW, Saibil HR. Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase. EMBO J. 2022;41(16):e110410.
Article CAS PubMed PubMed Central Google Scholar
Björkdahl C, Sjögren MJ, Zhou X, Concha H, Avila J, et al. Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments. J Neurosci Res. 2008;86(6):1343–52.
Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, et al. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet. 2007;16(5):555–66.
Article CAS PubMed Google Scholar
Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8.
Bonet-Costa V, Pomatto LC-D, Davies KJA. The proteasome and oxidative stress in alzheimer’s disease. Antioxid Redox Signal. 2016;25(16):886–901.
Article CAS PubMed PubMed Central Google Scholar
Boyle EI, Weng S, Gollub J, Jin H, Botstein D, et al. GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20(18):3710–5.
Article CAS PubMed Google Scholar
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer Disease-Associated Neurofibrillary Pathology Using Paraffin Sections and Immunocytochemistry. Acta Neuropathol. 2006;112(4):389–404.
Article PubMed PubMed Central Google Scholar
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules (Basel, Switzerland). 2020;25(24)5789. https://doi.org/10.3390/molecules25245789.
Brandt R, Gergou A, Wacker I, Fath T, Hutter H. A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging. 2009;30(1):22–33.
Article CAS PubMed Google Scholar
Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C. Assembly and Aggregation Properties of Synthetic Alzheimer’s A4/Beta Amyloid Peptide Analogs. J Biol Chem. 1992;267(1):546–54.
Article CAS PubMed Google Scholar
Burnouf S, Grönke S, Augustin H, Dols J, Gorsky MK, Werner J, Kerr F, Alic N, Martinez P, Partridge L. Deletion of endogenous Tau proteins is not detrimental in Drosophila. Sci Rep. 2016;6:23102.
Article CAS PubMed PubMed Central Google Scholar
Cacho-Valadez B, Muñoz-Lobato F, Pedrajas JR, Cabello J, Fierro-González JC, et al. The characterization of the Caenorhabditis elegans mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in β-amyloid peptide toxicity. Antioxid Redox Signal. 2012;16(12):1384–400.
Article CAS PubMed PubMed Central Google Scholar
Caine J, Sankovich S, Antony H, Waddington L, Macreadie P, et al. Alzheimer’s Abeta fused to green fluorescent protein induces growth stress and a heat shock response. FEMS Yeast Res. 2007;7(8):1230–6.
Article CAS PubMed Google Scholar
Caldeira GL, Ferreira IL, Rego AC. Impaired transcription in Alzheimer’s disease: key role in mitochondrial dysfunction and oxidative stress. J Alzheimers Dis. 2013;34(1):115–31.
Article CAS PubMed Google Scholar
Campanella C, Pace A, Caruso Bavisotto C, Marzullo P, Marino Gammazza A, et al. Heat shock proteins in alzheimer’s disease: role and targeting. Int J Mol Sci. 2018;19(9):2603. https://doi.org/10.3390/ijms19092603.
Cao W, Song H-J, Gangi T, Kelkar A, Antani I, et al. Identification of novel genes that modify phenotypes induced by Alzheimer’s beta-amyloid overexpression in Drosophila. Genetics. 2008;178(3):1457–71.
Article CAS PubMed PubMed Central Google Scholar
Cao W, Zheng H. Peripheral immune system in aging and Alzheimer’s disease. Mol Neurodegener. 2018;13(1):51.
Article CAS PubMed PubMed Central Google Scholar
Carmine-Simmen K, Proctor T, Tschäpe J, Poeck B, Triphan T, et al. Neurotoxic effects induced by the Drosophila amyloid-beta peptide suggest a conserved toxic function. Neurobiol Dis. 2009;33(2):274–81.
Article CAS PubMed Google Scholar
Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P. The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet. 2011;20(11):2144–60.
Article CAS PubMed PubMed Central Google Scholar
Caspersen C, Wang N, Yao J, Sosunov A, Chen X, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005;19(14):2040–1.
Article CAS PubMed Google Scholar
Cassar M, Kretzschmar D. Analysis of amyloid precursor protein function in drosophila melanogaster. Front Mol Neurosci. 2016;9:61.
Article PubMed PubMed Central Google Scholar
Cha M-Y, Cho HJ, Kim C, Jung YO, Kang MJ, et al. Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer’s disease. Hum Mol Genet. 2015;24(22):6492–504.
Article CAS PubMed PubMed Central Google Scholar
Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. Neurodegener Dis. 2012;9(2):68–80.
Comments (0)