1. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. 2009;131(17):6050-6051.
2. Yang WS, Park B-W, Jung EH, Jeon NJ, Kim YC, Lee DU, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science. 2017;356(6345):1376-1379.
3. Smith IC, Hoke ET, Solis‐Ibarra D, McGehee MD, Karunadasa HI. A Layered Hybrid Perovskite Solar‐Cell Absorber with Enhanced Moisture Stability. Angew Chem Int Ed. 2014;53(42):11232-11235.
4. Christians JA, Schulz P, Tinkham JS, Schloemer TH, Harvey SP, Tremolet de Villers BJ, et al. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nature Energy. 2018;3(1):68-74.
5. Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science. 2017;358(6364):768-771.
6. Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A. 2014;2(3):705-710.
7. Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ Sci. 2014;7(9):2963-2967.
8. Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy & Environmental Science. 2016;9(2):656-662.
9. Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin MK, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science. 2016;9(6):1989-1997.
10. Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, et al. A polymer scaffold for self-healing perovskite solar cells. Nature Communications. 2016;7(1).
11. Li X, Ibrahim Dar M, Yi C, Luo J, Tschumi M, Zakeeruddin SM, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat Chem. 2015;7(9):703-711.
12. Sun W, Li Y, Ye S, Rao H, Yan W, Peng H, et al. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale. 2016;8(20):10806-10813.
13. You J, Meng L, Song T-B, Guo T-F, Yang Y, Chang W-H, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology. 2015;11(1):75-81.
14. Christians JA, Fung RCM, Kamat PV. An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. Journal of the American Chemical Society. 2013;136(2):758-764.
15. Hwang I, Jeong I, Lee J, Ko MJ, Yong K. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. ACS Applied Materials & Interfaces. 2015;7(31):17330-17336.
16. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ. Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Lett. 2014;14(10):5561-5568.
17. Chiang C-H, Nazeeruddin MK, Grätzel M, Wu C-G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science. 2017;10(3):808-817.
18. Berhe TA, Su W-N, Chen C-H, Pan C-J, Cheng J-H, Chen H-M, et al. Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science. 2016;9(2):323-356.
19. Hou Y, Du X, Scheiner S, McMeekin DP, Wang Z, Li N, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science. 2017;358(6367):1192-1197.
20. Kim JH, Liang PW, Williams ST, Cho N, Chueh CC, Glaz MS, et al. High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer. Adv Mater. 2014;27(4):695-701.
21. Kim JH, Williams ST, Cho N, Chueh CC, Jen AKY. Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade‐Coating. Advanced Energy Materials. 2014;5(4).
22. Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ. Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials. 2015;5(20).
23. Zhang F, Shi W, Luo J, Pellet N, Yi C, Li X, et al. Isomer‐Pure Bis‐PCBM‐Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Adv Mater. 2017;29(17).
24. Kaltenbrunner M, Adam G, Głowacki ED, Drack M, Schwödiauer R, Leonat L, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nature Materials. 2015;14(10):1032-1039.
25. Hawash Z, Ono LK, Qi Y. Photovoltaics: Recent Advances in Spiro‐MeOTAD Hole Transport Material and Its Applications in Organic–Inorganic Halide Perovskite Solar Cells (Adv. Mater. Interfaces 1/2018). Advanced Materials Interfaces. 2018;5(1).
26. Niquet Y-M, Delerue C, Krzeminski C. Effects of Strain on the Carrier Mobility in Silicon Nanowires. Nano Lett. 2012;12(7):3545-3550.
27. Gunawan O, Sekaric L, Majumdar A, Rooks M, Appenzeller J, Sleight JW, et al. Measurement of Carrier Mobility in Silicon Nanowires. Nano Lett. 2008;8(6):1566-1571.
28. Bandaru PR, Pichanusakorn P. An outline of the synthesis and properties of silicon nanowires. Semicond Sci Technol. 2010;25(2):024003.
29. Bella F, Griffini G, Correa-Baena J-P, Saracco G, Grätzel M, Hagfeldt A, et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science. 2016;354(6309):203-206.
30. Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science. 2014;345(6194):295-298.
31. Farangi M, Zahedifar M, Mozdianfard MR, Pakzamir MH. Effects of silicon nanowires length on solar cells photovoltaic properties. Appl Phys A. 2012;109(2):299-306.
32. Amiri O, Salavati-Niasari M, Bagheri S, Yousefi AT. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP). Sci Rep. 2016;6(1).
33. Liao HC, Guo P, Hsu CP, Lin M, Wang B, Zeng L, et al. Enhanced Efficiency of Hot‐Cast Large‐Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Advanced Energy Materials. 2016;7(8).
34. Simya OK, Mahaboobbatcha A, Balachander K. A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 2015;82:248-261.
35. Dette C, Pérez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, et al. TiO2 Anatase with a Bandgap in the Visible Region. Nano Lett. 2014;14(11):6533-6538.
36. Yadav MK, Ghosh M, Biswas R, Raychaudhuri AK, Mookerjee A, Datta S. Band-gap variation in Mg- and Cd-doped ZnO nanostructures and molecular clusters. Physical Review B. 2007;76(19).
37. Zhou H, Chen Q, Li G, Luo S, Song T-b, Duan H-S, et al. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345(6196):542-546.
38. Yella A, Heiniger L-P, Gao P, Nazeeruddin MK, Grätzel M. Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Lett. 2014;14(5):2591-2596.
39. Yang L, Yan Y, Cai F, Li J, Wang T. Poly(9-vinylcarbazole) as a hole transport material for efficient and stable inverted planar heterojunction perovskite solar cells. Sol Energy Mater Sol Cells. 2017;163:210-217.
Comments (0)