scAAV9-VEGF alleviates symptoms of amyotrophic lateral sclerosis (ALS) mice through regulating aromatase

An T, Shi P, Duan W et al (2014) Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol 49:1435–1448. https://doi.org/10.1007/s12035-013-8623-3

Article  CAS  PubMed  Google Scholar 

Apte RS, Chen DS, Ferrara N (2019) VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 176:1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banerjee S, Zvelebil M, Furet P, Mueller-Vieira U, Evans DB, Dowsett M, Martin LA (2009) The vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 inhibits aromatase. Cancer Res 69:4716–4723. https://doi.org/10.1158/0008-5472.Can-08-4711

Article  CAS  Google Scholar 

Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48:629–641. https://doi.org/10.1016/j.freeradbiomed.2009.11.018

Article  CAS  Google Scholar 

Batra G, Jain M, Singh RS, Sharma AR, Singh A, Prakash A, Medhi B (2019) Novel therapeutic targets for amyotrophic lateral sclerosis. Indian J Pharmacol 51:418–425. https://doi.org/10.4103/ijp.IJP_823_19

Article  CAS  PubMed  Google Scholar 

Blakemore J, Naftolin F (2016) Aromatase: Contributions to Physiology and Disease in Women and Men. Physiology (bethesda) 31:258–269. https://doi.org/10.1152/physiol.00054.2015

Article  CAS  PubMed  Google Scholar 

Chia R, Chiò A, Traynor BJ (2018) Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 17:94–102. https://doi.org/10.1016/s1474-4422(17)30401-5

Article  CAS  PubMed  Google Scholar 

Deng Z, Lim J, Wang Q et al (2020) ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 16:917–931. https://doi.org/10.1080/15548627.2019.1644076

Article  CAS  PubMed  Google Scholar 

Echeverria V, Barreto GE, Avila-Rodriguezc M, Tarasov VV, Aliev G (2017) Is VEGF a Key Target of Cotinine and Other Potential Therapies Against Alzheimer Disease? Curr Alzheimer Res 14:1155–1163. https://doi.org/10.2174/1567205014666170329113007

Article  CAS  Google Scholar 

Evans CS, Holzbaur ELF (2019) Autophagy and mitophagy in ALS. Neurobiol Dis 122:35–40. https://doi.org/10.1016/j.nbd.2018.07.005

Article  CAS  PubMed  Google Scholar 

Gao L, Zhou S, Cai H, Gong Z, Zang D (2014) VEGF levels in CSF and serum in mild ALS patients. J Neurol Sci 346:216–220. https://doi.org/10.1016/j.jns.2014.08.031

Article  CAS  PubMed  Google Scholar 

Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071. https://doi.org/10.1038/nrdp.2017.71

Article  PubMed  Google Scholar 

Hulisz D (2018) Amyotrophic lateral sclerosis: disease state overview. Am J Manag Care 24:S320-s326

PubMed  Google Scholar 

Ji YX, Zhao M, Liu YL, Chen LS, Hao PL, Sun C (2017) Expression of aromatase and estrogen receptors in lumbar motoneurons of mice. Neurosci Lett 653:7–11. https://doi.org/10.1016/j.neulet.2017.05.017

Article  CAS  PubMed  Google Scholar 

Kim HJ, Magranè J, Starkov AA, Manfredi G (2012) The mitochondrial calcium regulator cyclophilin D is an essential component of oestrogen-mediated neuroprotection in amyotrophic lateral sclerosis. Brain 135:2865–2874. https://doi.org/10.1093/brain/aws208

Article  PubMed  PubMed Central  Google Scholar 

Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P (2016) Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol 12:439–454. https://doi.org/10.1038/nrneurol.2016.88

Article  CAS  PubMed  Google Scholar 

Liu L, Killoy KM, Vargas MR, Yamamoto Y, Pehar M (2020) Effects of RAGE inhibition on the progression of the disease in hSOD1(G93A) ALS mice. Pharmacol Res Perspect 8:e00636. https://doi.org/10.1002/prp2.636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Chu B, Jin S et al (2021) Vascular endothelial growth factor alleviates mitochondrial dysfunction and suppression of mitochondrial biogenesis in models of Alzheimer’s disease. Int J Neurosci 131:154–162. https://doi.org/10.1080/00207454.2020.1733564

Article  CAS  PubMed  Google Scholar 

Mancino A, Mancino MG, Glaser SS et al (2009) Estrogens stimulate the proliferation of human cholangiocarcinoma by inducing the expression and secretion of vascular endothelial growth factor. Dig Liver Dis 41:156–163. https://doi.org/10.1016/j.dld.2008.02.015

Article  CAS  PubMed  Google Scholar 

Mesquita-Britto MHR, Mendonça MCP, Soares ES, de Oliveira G, Solon CS, Velloso LA, da Cruz-Höfling MA (2020) VEGF/VEGFR-2 system exerts neuroprotection against Phoneutria nigriventer spider envenomation through PI3K-AKT-dependent pathway. Toxicon 185:76–90. https://doi.org/10.1016/j.toxicon.2020.06.019

Article  CAS  PubMed  Google Scholar 

Nguyen DKH, Thombre R, Wang J (2019) Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett 697:34–48. https://doi.org/10.1016/j.neulet.2018.04.006

Article  CAS  PubMed  Google Scholar 

Norris SP, Likanje MN, Andrews JA (2020) Amyotrophic lateral sclerosis: update on clinical management. Curr Opin Neurol 33:641–648. https://doi.org/10.1097/wco.0000000000000864

Article  CAS  PubMed  Google Scholar 

Pandey R, Shukla P, Anjum B et al (2020) Estrogen deficiency induces memory loss via altered hippocampal HB-EGF and autophagy. J Endocrinol 244:53–70. https://doi.org/10.1530/joe-19-0197

Article  PubMed  Google Scholar 

Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, Cereda C (2018) SOD1 in Amyotrophic Lateral Sclerosis: “Ambivalent” Behavior Connected to the Disease. Int J Mol Sci. https://doi.org/10.3390/ijms19051345

Article  PubMed  PubMed Central  Google Scholar 

Rai SN, Dilnashin H, Birla H et al (2019) The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotox Res 35:775–795. https://doi.org/10.1007/s12640-019-0003-y

Article  CAS  PubMed  Google Scholar 

Rai SN, Singh P, Steinbusch HWM, Vamanu E, Ashraf G, Singh MP (2021) The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines. https://doi.org/10.3390/biomedicines9101284

Article  PubMed  PubMed Central  Google Scholar 

Ramesh N, Pandey UB (2017) Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand. Front Mol Neurosci 10:263. https://doi.org/10.3389/fnmol.2017.00263

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riancho J, Gonzalo I, Ruiz-Soto M, Berciano J (2019) Why do motor neurons degenerate? Actualization in the pathogenesis of amyotrophic lateral sclerosis. Neurologia (engl Ed) 34:27–37. https://doi.org/10.1016/j.nrl.2015.12.001

Article  CAS  PubMed  Google Scholar 

Shantanu S, Vijayalakshmi K, Shruthi S et al (2017) VEGF alleviates ALS-CSF induced cytoplasmic accumulations of TDP-43 and FUS/TLS in NSC-34 cells. J Chem Neuroanat 81:48–52. https://doi.org/10.1016/j.jchemneu.2017.01.007

Article  CAS  PubMed  Google Scholar 

Shim JW, Madsen JR (2018) VEGF Signaling in Neurological Disorders. Int J Mol Sci. https://doi.org/10.3390/ijms19010275

Article  PubMed  PubMed Central  Google Scholar 

Singh BK, Sinha RA, Tripathi M et al (2018) Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci Signal. https://doi.org/10.1126/scisignal.aam5855

Article  PubMed  PubMed Central  Google Scholar 

Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. https://doi.org/10.3390/molecules24081583

Article  PubMed  PubMed Central  Google Scholar 

Smith EF, Shaw PJ, De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710:132933. https://doi.org/10.1016/j.neulet.2017.06.052

Article  CAS  PubMed  Google Scholar 

Sun C, Liu Y, Liu Y et al (2017) Characterization of aromatase expression in the spinal cord of an animal model of familial ALS. Brain Res Bull 132:180–189. https://doi.org/10.1016/j.brainresbull.2017.05.016

Article  CAS  PubMed  Google Scholar 

Tian YY, Tang CJ, Wang JN et al (2007) Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors. Neurosci Lett 421:239–244. https://doi.org/10.1016/j.neulet.2007.05.033

留言 (0)

沒有登入
gif