Differential Effects of Clotrimazole on X-Ray Crystal Structures of Human Cytochromes P450 3A5 and 3A4 [Articles]

Abstract

Cytochromes P450 CYP3A5 and CYP3A4 exhibit differential plasticity that underlies differences in drug metabolism and drug-drug interactions. To extend previous studies, CYP3A4 and CYP3A5 were cocrystallized with clotrimazole, a compact ligand that binds to the heme iron in the catalytic center of the active site. Binding studies indicate that clotrimazole exhibits tight binding to CYP3A5 with a binding affinity (Kd) of <0.01 μM like that of CYP3A4. A single clotrimazole is bound to the heme iron in CYP3A4 that triggers expansion of active site cavity that reflects a loss of aromatic interactions between phenylalanine sidechains in the distal active site and increased conformational entropy for the F-F’ connector due to reorientation of Phe-304 to accommodate clotrimazole. In contrast to CYP3A4, the CYP3A5 Phe-304 exhibits an induced fit along with Phe-213 to form edge-to-face aromatic interactions with heme-bound clotrimazole. These aromatic interactions between aromatic amino acids propagate by induced fits with a second clotrimazole residing in the distal active site and a third clotrimazole bound in an expanded entrance channel as well as between the three clotrimazoles. The large, expanded entrance channel surrounded by the C-terminal loop and the F’ and A’ helices in CYP3A5 suggests conformational selection for the binding of clotrimazole due to its large girth, which may also cause the entrance channel to remain open after the binding of the first clotrimazole to the heme iron. The additional binding sites suggest a path for sequential binding of one molecule to reach and bind to the heme iron.

SIGNIFICANCE STATEMENT Clotrimazole binds to the heme iron of CYP3A5 and CYP3A4. In CYP3A5, two clotrimazoles also bind in the distal active site and in an expanded entrance channel. Aromatic interactions between clotrimazoles and phenylalanine sidechains including Phe-304 indicate induced fits for each clotrimazole. In contrast to CYP3A5, displacement of the CYP3A4 Phe-304 rotamer by clotrimazole leads to extensive disruption of phenylalanine interactions that limit the space above the heme, to an expanded active site cavity, and to increased CYP3A4 conformational heterogeneity.

FootnotesReceived July 21, 2023.Accepted September 25, 2023.

This work was supported by National Institutes of Health National Institute of General Medical Sciences [Grant 5R01 GM031001-41] (E.F.J.). Use of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by National Institutes of Health (NIH) National Institute of General Medical Sciences (NIGMS) [Grant P30GM133894]. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH.

The authors declare that they have no conflicts of interest with the contents of this article.

dx.doi.org/10.1124/dmd.123.001464.

Embedded ImageEmbedded ImageThis article has supplemental material available at dmd.aspetjournals.org.

Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics

留言 (0)

沒有登入
gif