Abejón R, De Cazes M, Belleville MP, Sanchez-Marcano J (2015) Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents. Water Res 73:118–131. https://doi.org/10.1016/j.watres.2015.01.012
Ahmad S, Sebai W, Belleville M-P et al (2021) Enzymatic monolithic reactors for micropollutants degradation. Catal Today 362:62–71. https://doi.org/10.1016/j.cattod.2020.04.048
Ahmad S, Sebai W, Belleville MP et al (2022) Experimental and modeling of tetracycline degradation in water in a flow-through enzymatic monolithic reactor. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21204-y
Al-Maqdi KA, Hisaindee S, Rauf MA, Ashraf SS (2018) Detoxification and degradation of sulfamethoxazole by soybean peroxidase and UV + H2O2 remediation approaches. Chem Eng J 352:450–458. https://doi.org/10.1016/j.cej.2018.07.036
Al-sareji OJ, Meiczinger M, Somogyi V et al (2023) Removal of emerging pollutants from water using enzyme-immobilized activated carbon from coconut shell. J Environ Chem Eng 11:109803. https://doi.org/10.1016/j.jece.2023.109803
Alharbi SK, Nghiem LD, van de Merwe JP et al (2019) Degradation of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole by laccase from Trametes versicolor : transformation products and toxicity of treated effluent. Biocatal Biotransform 37:1–10. https://doi.org/10.1080/10242422.2019.1580268
Almaqdi KA, Morsi R, Alhayuti B et al (2019) LC-MSMS based screening of emerging pollutant degradation by different peroxidases. BMC Biotechnol 19:83. https://doi.org/10.1186/s12896-019-0574-y
Alokpa K, Lafortune F, Cabana H (2022) Application of laccase and hydrolases for trace organic contaminants removal from contaminated water. Environ Adv 8:100243. https://doi.org/10.1016/j.envadv.2022.100243
Alsadik A, Athamneh K, Yousef AF et al (2021) Efficient degradation of 2-mercaptobenzothiazole and other emerging pollutants by recombinant bacterial dye-decolorizing peroxidases. Biomolecules. https://doi.org/10.3390/biom11050656
Ardao I, Magnin D, Agathos SN (2015) Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals. Biotechnol Bioeng 112:1986–1996. https://doi.org/10.1002/bit.25612
Ashrafi SD, Nasseri MA, Alimohammadi S et al (2020) Application of free and immobilized laccase for removal and detoxification of fluoroquinolones from aqueous solution. Glob NEST J. https://doi.org/10.30955/gnj.002973
Asif MB, Hai FI, Dhar BR et al (2018) Impact of simultaneous retention of micropollutants and laccase on micropollutant degradation in enzymatic membrane bioreactor. Bioresour Technol 267:473–480. https://doi.org/10.1016/j.biortech.2018.07.066
Asif MB, Hai FI, Singh L et al (2017a) Degradation of pharmaceuticals and personal care products by white-Rot fungi—a critical review. Curr Pollut Reports 3:88–103. https://doi.org/10.1007/s40726-017-0049-5
Asif MB, Nguyen LN, Hai FI et al (2017b) Integration of an enzymatic bioreactor with membrane distillation for enhanced biodegradation of trace organic contaminants. Int Biodeterior Biodegrad 124:73–81. https://doi.org/10.1016/j.ibiod.2017.06.012
Athamneh K, Alneyadi A, Alsadik A et al (2022) Efficient degradation of various emerging pollutants by wild type and evolved fungal DyP4 peroxidases. PLoS ONE 17:e0262492. https://doi.org/10.1371/journal.pone.0262492
Aus der Beek T, Weber FA, Bergmann A, et al (2016) Pharmaceuticals in the environment-Global occurrences and perspectives. Environ Toxicol Chem 35:823–835. https://doi.org/10.1002/etc.3339
Ba S, Haroune L, Soumano L et al (2018) A hybrid bioreactor based on insolubilized tyrosinase and laccase catalysis and microfiltration membrane remove pharmaceuticals from wastewater. Chemosphere 201:749–755. https://doi.org/10.1016/j.chemosphere.2018.03.022
Ba S, Vinoth Kumar V (2017) Recent developments in the use of tyrosinase and laccase in environmental applications. Crit Rev Biotechnol 37:819–832. https://doi.org/10.1080/07388551.2016.1261081
Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
Bankole PO, Omoni VT, Tennison-Omovoh CA et al (2022) Novel laccase from Xylaria polymorpha and its efficiency in the biotransformation of pharmaceuticals: optimization of operational conditions, comparative effect of redox-mediators and toxicity studies. Colloids Surf B Biointerfaces 217:112675. https://doi.org/10.1016/j.colsurfb.2022.112675
Barber-Zucker S, Mindel V, Garcia-Ruiz E et al (2022) Stable and functionally diverse versatile peroxidases designed directly from sequences. J Am Chem Soc 144:3564–3571. https://doi.org/10.1021/jacs.1c12433
Barber EA, Liu Z, Smith SR (2020) Organic contaminant biodegradation by oxidoreductase enzymes in wastewater treatment. Microorganisms 8:122. https://doi.org/10.3390/microorganisms8010122
Battistuzzi G, Bellei M, Bortolotti CA, Sola M (2010) Redox properties of heme peroxidases. Arch Biochem Biophys 500:21–36. https://doi.org/10.1016/j.abb.2010.03.002
Becker D, Varela Della Giustina S, Rodriguez-Mozaz S et al (2016) Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase – Degradation of compounds does not always eliminate toxicity. Bioresour Technol 219:500–509. https://doi.org/10.1016/j.biortech.2016.08.004
Bensoussan C, de Gunzburg J (2012) Methods for the Inactivation of Antibiotics (WO2012007536A1). WIPO International bureau. https://patents.google.com/patent/WO2012007536A1/en
Bilal M, Adeel M, Rasheed T et al (2019a) Emerging contaminants of high concern and their enzyme-assisted biodegradation – a review. Environ Int 124:336–353. https://doi.org/10.1016/j.envint.2019.01.011
Bilal M, Ashraf SS, Barceló D, Iqbal HMN (2019b) Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci Total Environ 691:1190–1211. https://doi.org/10.1016/j.scitotenv.2019.07.224
Bollag J (1992) Decontaminating soil with enzymes. Environ Sci Technol 26:1876–1881. https://doi.org/10.1021/es00034a002
Bommarius AS (2023) Total turnover number – a key criterion for process evaluation. Chem-Ing-Tech 95:491–497. https://doi.org/10.1002/cite.202200177
Bormann S, Burek BO, Ulber R, Holtmann D (2020) Immobilization of unspecific peroxygenase expressed in Pichia pastoris by metal affinity binding. Mol Catal 492:110999. https://doi.org/10.1016/j.mcat.2020.110999
Bornscheuer UT, Huisman GW, Kazlauskas RJ et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194. https://doi.org/10.1038/nature11117
Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705. https://doi.org/10.1016/j.biotechadv.2010.05.002
Carvalho RH, Lemos F, Lemos MANDA et al (2006) Kinetic modelling of phenol co-oxidation using horseradish peroxidase. Bioprocess Biosyst Eng 29:99–108. https://doi.org/10.1007/s00449-006-0057-0
Catherine H, Penninckx M, Frédéric D (2016) Product formation from phenolic compounds removal by laccases: a review. Environ Technol Innov 5:250–266. https://doi.org/10.1016/j.eti.2016.04.001
Catucci G, Valetti F, Sadeghi SJ, Gilardi G (2020) Biochemical features of dye-decolorizing peroxidases: current impact on lignin degradation. Biotechnol Appl Biochem 67:751–759. https://doi.org/10.1002/bab.2015
Chaturvedi P, Giri BS, Shukla P, Gupta P (2021) Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: challenges and perspective. Bioresour Technol 319:124161. https://doi.org/10.1016/j.biortech.2020.124161
Chen J, Liu J, Chen B et al (2023) Effective biodegradation of chlorophenols, sulfonamides, and their mixtures by bacterial laccase immobilized on chitin. Ecotoxicol Environ Saf 256:114856. https://doi.org/10.1016/j.ecoenv.2023.114856
Chen Y, Stemple B, Kumar M, Wei N (2016) Cell surface display fungal laccase as a renewable biocatalyst for degradation of persistent micropollutants bisphenol A and sulfamethoxazole. Environ Sci Technol 50:8799–8808. https://doi.org/10.1021/acs.est.6b01641
Cho S-H, Jang A, Bishop PL, Moon S-H (2010) Kinetics determination of electrogenerated hydrogen peroxide (H2O2) using carbon fiber microelectrode in electroenzymatic degradation of phenolic compounds. J Hazard Mater 175:253–257. https://doi.org/10.1016/j.jhazmat.2009.09.157
Cuprys A, Thomson P, Ouarda Y et al (2020) Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121890
Cuprys A, Thomson P, Suresh G et al (2022) Potential of agro-industrial produced laccase to remove ciprofloxacin. Environ Sci Pollut Res 29:10112–10121. https://doi.org/10.1007/s11356-021-13578-2
Comments (0)