Study on the radiofrequency transparency of partial-ring oval-shaped prototype PET inserts in a 3 T clinical MRI system

Ishi S, et al. Optimized workflow and imaging protocols for whole-body oncologic PET/MRI. Jpn J Radiol. 2016;34(11):754–62.

Article  Google Scholar 

Catana C, et al. PET/MRI for neurologic applications. J Nucl Med. 2012;53:1916–25.

Article  PubMed  Google Scholar 

Werner P, et al. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging. 2015;42:512–26.

Article  CAS  PubMed  Google Scholar 

Bashir U, et al. PET/MRI in oncological imaging: state of the art. Diagnostics (Basel). 2015;5:333–57.

Article  CAS  PubMed  Google Scholar 

Fraum TJ, Fowler KJ, McConathy J. PET/MRI: emerging clinical applications in oncology. Academic Radiol. 2015;23:220–36.

Article  Google Scholar 

Jadvar H, Colletti PM. Competitive advantages of PET/MRI. Eur J Radiol. 2014;83:84–94.

Article  PubMed  Google Scholar 

Nensa F, et al. Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol. 2014;20:438–47.

Article  PubMed  PubMed Central  Google Scholar 

Iagaru A, et al. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. Clin Nucl Med. 2015;40:1–8.

Article  PubMed  PubMed Central  Google Scholar 

Shen G, et al. Diagnostic performance of whole-body PET/MRI for detecting malignancies in cancer patients: a meta-analysis. PLoS ONE. 2016;11:e0154497.

Article  PubMed  PubMed Central  Google Scholar 

Schmand M, et al. BrainPET: First human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med. 2007;48(Suppl. 2):45P.

Google Scholar 

Kolb A, et al. Technical performance evaluation of a human brain PET/MRI system. Eur Radiol. 2012;22:1776–88.

Article  PubMed  Google Scholar 

Kang J, et al. A feasibility study of photosensor charge signal transmission to preamplifier using long cable for development of hybrid PET-MRI. Med Phys. 2010;42:5655–64.

Article  Google Scholar 

González AJ, et al. The MINDView brain PET detector, feasibility study based on SiPM arrays. Nucl Instr Meth Phys Res A. 2016;818:82–90.

Article  Google Scholar 

Akram MSH, et al. MRI compatibility study of an integrated PET/RF-coil prototype system at 3 T. J Mag Reson. 2017;283:62–70.

Article  CAS  Google Scholar 

Lee BJ, et al. MR performance in the presence of a radio frequency-penetrable positron emission tomography (PET) insert for simultaneous PET/MRI. IEEE Trans Med Imag. 2018;37:2060–9.

Article  Google Scholar 

Olcott P, et al. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI. Phys Med Biol. 2015;60:3459–78.

Article  PubMed  Google Scholar 

Grant AM, et al. Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert. Med Phys. 2016;44:112–20.

Article  Google Scholar 

Akram MSH. A prototype oval PET insert for MRI systems targeted for body imaging. 2017 Report on PET Imaging Physics Research, National institutes for quantum science and technology (QST), Japan. Website: https://www.nirs.qst.go.jp/usr/medical-imaging/ja/study/pdf/QST_R_7.pdf

Akram MSH, et al. Study on the radiofrequency transparency of electrically floating and ground PET inserts in a 3T clinical MRI system. Med Phys. 2022;49:2965–78.

Article  CAS  PubMed  Google Scholar 

Vaska P, Cao T. The state of instrumentation for combined positron emission tomography and magnetic resonance imaging. Semin Nucl Med. 2013;43:11–8.

Article  PubMed  Google Scholar 

Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115–54.

Article  PubMed  Google Scholar 

Shimizu K et al. Multi-pixel photon counter module for MRI compatible application. IEEE NSS/MIC M3CP-85. 2015.

Leifer MC. Resonant modes of the birdcage coil. J Magn Reson. 1997;124:51–60.

Article  CAS  Google Scholar 

Collins CM, et al. A method for accurate calculation of B1 fields in three dimensions. Effects of shield geometry on field strength and homogeneity in the birdcage coil. J Magn Reson. 1997;125:233–41.

Article  CAS  Google Scholar 

Akamatsu G, et al. Design consideration of compact cardiac TOF-PET systems: a simulation study. Phys Med Biol. 2021;66:074002.

Article  CAS  Google Scholar 

Redpath TW. Signal-to-noise ratio in MRI. British J Radiol. 1998;71:704–7.

Article  CAS  Google Scholar 

Akram MSH, et al. Geometry optimization of electrically floating PET inserts for improved RF penetration for a 3T MRI system. Med Phys. 2018;45:4627–41.

Article  PubMed  Google Scholar 

Surti S, et al. Design study of an in situ PET scanner for use in proton beam therapy. Phys Med Biol. 2011;56:2667–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopes PC, et al. First in situ TOF-PET study using digital photon counters for proton range verification. Phys Med Biol. 2016;61:6203–30.

Article  CAS  Google Scholar 

Torres-Espallardo I, et al. Evaluation of resistive-plate-chamber-based TOF-PET applied to in-beam particle therapy monitoring. Phys Med Biol. 2015;60:N187–208.

Article  CAS  PubMed  Google Scholar 

Crespo P, Shakirin G, Enghardt W. On the detector arrangement for in-beam PET for hadron therapy monitoring. Phys Med Biol. 2006;51:2143–63.

Article  PubMed  Google Scholar 

Ott OW. Electromagnetic compatibility engineering. New Jersey: Wiley; 2009.

Book  Google Scholar 

Stollberger R, et al. RF field mapping in vivo. Proc Intl Soc Mag Reson Med. 1988;P106:7170.

Google Scholar 

Insko EK, Bolinger L. Mapping of radiofrequency field. J Magn Reson Ser A. 1993;103:82–5.

Article  CAS  Google Scholar 

Jackson EF et al. Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities. AAPM report no. 100, American Assoc Phys Med. 2010.

Ibrahim TS, et al. B1 field homogeneity and SAR calculations for the birdcage coil. Phys Med Biol. 2001;46:609–19.

Article  CAS  PubMed  Google Scholar 

Vaughan JT, et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med. 2001;46:24–30.

Article  CAS  PubMed  Google Scholar 

Collins CM, Wang Z. Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med. 2011;65:1470–82.

Article  PubMed  PubMed Central  Google Scholar 

Wang J, et al. Measurement and correction of transmitter and receiver induced nonuniformities in vivo. Magn Reson Med. 2005;53:408–17.

Article  PubMed  Google Scholar 

Watanabe H, Takaya N, Mitsumori F. Non-uniformity correction of human brain imaging at high field by RF field mapping of B1+ and B1-. J Magn Reson. 2011;212:426–30.

Article  CAS  PubMed  Google Scholar 

Cunningham CH, Pauly JM, Nayak KS. Saturated double-angle method for rapid B1 mapping. Magn Reson Med. 2006;55:1326–33.

Article  PubMed  Google Scholar 

Redpath TW, Wiggins CJ. Estimating achievable signal-to-noise ratios of MRI transmit–receive coils from radiofrequency power measurements: applications in quality control. Phys Med Biol. 2000;45:217–27.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif