The montage method improves the classification of suspected acute ischemic stroke using the convolution neural network and brain MRI

Ichikawa S, Hamada M, Sugimori H. A deep-learning method using computed tomography scout images for estimating patient body weight. Sci Rep. 2021;11:1–9.

Article  Google Scholar 

Kawakami M, Hirata K, Furuya S, Kobayashi K, Sugimori H, Magota K, et al. Development of combination methods for detecting malignant uptakes based on physiological uptake detection using object detection with PET-CT MIP images. Front Med. 2020;7: 616746.

Article  Google Scholar 

Fulton LV, Dolezel D, Harrop J, Yan Y, Fulton CP. Classification of Alzheimer’s Disease with and without Imagery using Gradient Boosted Machines and ResNet-50. Brain Sci 2019;9. https://doi.org/10.3390/brainsci9090212

Do L-N, Baek BH, Kim SK, Yang H-J, Park I, Yoon W. Automatic Assessment of ASPECTS Using Diffusion-Weighted Imaging in Acute Ischemic Stroke Using Recurrent Residual Convolutional Neural Network. Diagnostics (Basel) 2020;10. https://doi.org/10.3390/diagnostics10100803

Alshazly H, Linse C, Abdalla M, Barth E, Martinetz T. COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans. PeerJ Comput Sci. 2021;7: e655.

Article  PubMed  PubMed Central  Google Scholar 

Heidari M, Mirniaharikandehei S, Khuzani AZ, Danala G, Qiu Y, Zheng B. Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. Int J Med Inform. 2020;144: 104284.

Article  PubMed  PubMed Central  Google Scholar 

Matsuo H, Nishio M, Kanda T, Kojita Y, Kono AK, Hori M, et al. Diagnostic accuracy of deep-learning with anomaly detection for a small amount of imbalanced data: discriminating malignant parotid tumors in MRI. Sci Rep. 2020;10:1–9.

Article  Google Scholar 

Puig J, Shankar J, Liebeskind D, Terceño M, Nael K, Demchuk AM, et al. From “Time is Brain” to “Imaging is Brain”: A Paradigm Shift in the Management of Acute Ischemic Stroke. J Neuroimaging. 2020;30:562–71.

Article  PubMed  Google Scholar 

Yoo AJ, Verduzco LA, Schaefer PW, Hirsch JA, Rabinov JD, González RG. MRI-Based Selection for Intra-Arterial Stroke Therapy. Stroke. 2009;40:2046–54.

Article  PubMed  PubMed Central  Google Scholar 

Nael K, Khan R, Choudhary G, Meshksar A, Villablanca P, Tay J, et al. Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries. Stroke. 2014;45:1985–91.

Article  PubMed  Google Scholar 

Oura D, Kawabori M, Niiya Y, Iwasaki M, Satoh S, Yokohama T, et al. The validity of the acute stroke assessment using rapid pseudo-continuous arterial spin labeling (ASAP-ASL) method for acute thrombectomy. J Neurosurg Sci. 2021;65:480–5.

Article  PubMed  Google Scholar 

Bivard A, Krishnamurthy V, Stanwell P, Levi C, Spratt NJ, Davis S, et al. Arterial spin labeling versus bolus-tracking perfusion in hyperacute stroke. Stroke. 2014;45:127–33.

Article  PubMed  Google Scholar 

Atchaneeyasakul K, Shang T, Haussen D, Ortiz G, Yavagal D. Impact of MRI Selection on Triage of Endovascular Therapy in Acute Ischemic Stroke: The MRI in Acute Management of Ischemic Stroke (MIAMIS) Registry. Interventional Neurology. 2019;8:135–43.

Article  PubMed  PubMed Central  Google Scholar 

Wang K, Shou Q, Ma SJ, Liebeskind D, Qiao XJ, Saver J, et al. Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke. Stroke. 2020;51:489–97.

Article  PubMed  Google Scholar 

Wagner DT, Tilmans L, Peng K, Niedermeier M, Rohl M, Ryan S, et al. Artificial Intelligence in Neuroradiology: A Review of Current Topics and Competition Challenges. Diagnostics (Basel). 2023. https://doi.org/10.3390/diagnostics13162670.

Article  PubMed  PubMed Central  Google Scholar 

Heit JJ, Coelho H, Lima FO, Granja M, Aghaebrahim A, Hanel R, et al. Automated Cerebral Hemorrhage Detection Using RAPID. AJNR Am J Neuroradiol. 2021;42:273–8. https://doi.org/10.3174/ajnr.A6926.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben Alaya I, Limam H, Kraiem T. Applications of artificial intelligence for DWI and PWI data processing in acute ischemic stroke: Current practices and future directions. Clin Imaging. 2022;81:79–86. https://doi.org/10.1016/j.clinimag.2021.09.015.

Article  PubMed  Google Scholar 

Akay EMZ, Hilbert A, Carlisle BG, Madai VI, Mutke MA, Frey D. Artificial Intelligence for Clinical Decision Support in Acute Ischemic Stroke: A Systematic Review. Stroke. 2023;54:1505–16. https://doi.org/10.1161/STROKEAHA.122.041442.

Article  PubMed  Google Scholar 

Edlow BL, Hurwitz S, Edlow JA. Diagnosis of DWI-negative acute ischemic stroke. Neurology. 2017;89:256–62.

Article  PubMed  PubMed Central  Google Scholar 

Na DG, Thijs VN, Albers GW, Moseley ME, Marks MP. Diffusion-weighted MR imaging in acute ischemia: value of apparent diffusion coefficient and signal intensity thresholds in predicting tissue at risk and final infarct size. AJNR Am J Neuroradiol. 2004;25:1331–6.

PubMed  PubMed Central  Google Scholar 

Pistocchi S, Strambo D, Bartolini B, Maeder P, Meuli R, Michel P, et al. MRI software for diffusion-perfusion mismatch analysis may impact on patients’ selection and clinical outcome. Eur Radiol. 2021;32:1144.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Lin C, Minuti A, Lipton M. Arterial spin labeling compared to dynamic susceptibility contrast MR perfusion imaging for assessment of ischemic penumbra: a systematic review. J Neuroimaging. 2021;31:1067–76.

Article  PubMed  Google Scholar 

Haller S, Zaharchuk G, Thomas DL, Lovblad K-O, Barkhof F, Golay X. Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications. Radiology. 2016;281:337–56.

Article  PubMed  Google Scholar 

Kim BS, Lee S-T, Yun TJ, Lee SK, Paeng JC, Jun J, et al. Capability of arterial spin labeling MR imaging in localizing seizure focus in clinical seizure activity. Eur J Radiol. 2016;85:1295–303.

Article  PubMed  Google Scholar 

Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, Wu O, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10:978–86.

Article  PubMed  Google Scholar 

Miceli G, Basso MG, Rizzo G, Pintus C, Cocciola E, Pennacchio AR, et al. Artificial Intelligence in Acute Ischemic Stroke Subtypes According to Toast Classification: A Comprehensive Narrative Review. Biomedicines. 2023. https://doi.org/10.3390/biomedicines11041138.

Article  PubMed  PubMed Central  Google Scholar 

Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. Stroke. 2019;50:1263–5. https://doi.org/10.1161/STROKEAHA.118.024293.

Article  PubMed  Google Scholar 

Huang C-C, Chiang H-F, Hsieh C-C, Chou C-L, Jhou Z-Y, Hou T-Y, et al. Using Deep-Learning-Based Artificial Intelligence Technique to Automatically Evaluate the Collateral Status of Multiphase CTA in Acute Ischemic Stroke. Tomography. 2023;9:647–56. https://doi.org/10.3390/tomography9020052.

Article  PubMed  PubMed Central  Google Scholar 

Aminu M, Ahmad NA, Mohd Noor MH. Covid-19 detection via deep neural network and occlusion sensitivity maps. Alex Eng J. 2021;60:4829–55.

Article  Google Scholar 

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. IEEE International Conference on Computer Vision (ICCV). 2017;2017:618–26.

Article  Google Scholar 

留言 (0)

沒有登入
gif