Two novel cases of biallelic SMPD4 variants with brain structural abnormalities

Wu BX, Clarke CJ, Hannun YA (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med 12(4):320–330. https://doi.org/10.1007/s12017-010-8120-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281(19):13784–13793. https://doi.org/10.1074/jbc.M511306200

Article  CAS  PubMed  Google Scholar 

Peeters BWA, Piet ACA, Fornerod M (2022) Generating membrane curvature at the nuclear pore: a lipid point of view. Cells-Basel 11(3):469. https://doi.org/10.3390/cells11030469

Article  CAS  Google Scholar 

Cheng LC, Baboo S, Lindsay C, Brusman L, Martinez-Bartolome S, Tapia O et al (2019) Identification of new transmembrane proteins concentrated at the nuclear envelope using organellar proteomics of mesenchymal cells. Nucleus-Phila 10(1):126–143. https://doi.org/10.1080/19491034.2019.1618175

Article  Google Scholar 

Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML et al (2014) Dividing cells regulate their lipid composition and localization. Cell 156(3):428–439. https://doi.org/10.1016/j.cell.2013.12.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS (2008) Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res 6(5):795–807. https://doi.org/10.1158/1541-7786.MCR-07-2097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magini P, Smits DJ, Vandervore L, Schot R, Columbaro M, Kasteleijn E et al (2019) Loss of SMPD4 causes a developmental disorder characterized by microcephaly and congenital arthrogryposis. Am J Hum Genet. 105(4):689–705. https://doi.org/10.1016/j.ajhg.2019.08.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bijarnia-Mahay S, Somashekar PH, Kaur P, Kulshrestha S, Ramprasad VL, Murugan S et al (2021) Growth and neurodevelopmental disorder with arthrogryposis, microcephaly and structural brain anomalies caused by bi-allelic partial deletion of SMPD4 gene. J Hum Genet. https://doi.org/10.1038/s10038-021-00981-3

Yamada M, Suzuki H, Shima T, Uehara T, Kosaki K (2022) A patient with compound heterozygosity of SMPD4: another example of utility of exome-based copy number analysis in autosomal recessive disorders. Am J Med Genet A 188(2):613–617. https://doi.org/10.1002/ajmg.a.62535

Article  CAS  PubMed  Google Scholar 

Ravenscroft G, Clayton JS, Faiz F, Sivadorai P, Milnes D, Cincotta R et al (2021) Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J Med Genet 58(9):609–618. https://doi.org/10.1136/jmedgenet-2020-106901

Article  CAS  PubMed  Google Scholar 

Ji W, Kong X, Yin H, Xu J, Wang X (2022) Case report: novel biallelic null variants of SMPD4 confirm its involvement in neurodevelopmental disorder with microcephaly, arthrogryposis, and structural brain anomalies. Front Genet 13:872264. https://doi.org/10.3389/fgene.2022.872264

Article  PubMed  PubMed Central  Google Scholar 

Smits DJ, Schot R, Krusy N, Wiegmann K, Utermohlen O, Mulder MT et al (2023) SMPD4 regulates mitotic nuclear envelope dynamics and its loss causes microcephaly and diabetes. Brain. https://doi.org/10.1093/brain/awad033

Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N et al (2019) Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet 105(4):879. https://doi.org/10.1016/j.ajhg.2019.09.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Theresia KJ, Wolfgang H, Gundula G, Michael E, Alexander W, Caroline G et al (2023) Prenatal diagnosis of SMPD4 loss - a neurodevelopmental disorder with microcephaly, arthrogryposis and structural brain anomalies. Prenat Diagn 43(3):284–287. https://doi.org/10.1002/pd.6324

Article  CAS  PubMed  Google Scholar 

Watanabe K, Nakashima M, Kumada S, Mashimo H, Enokizono M, Yamada K et al (2021) Identification of two novel de novo TUBB variants in cases with brain malformations: case reports and literature review. J Hum Genet 66(12):1193–1197. https://doi.org/10.1038/s10038-021-00956-4

Article  CAS  PubMed  Google Scholar 

Miyamoto S, Nakashima M, Ohashi T, Hiraide T, Kurosawa K, Yamamoto T et al (2019) A case of de novo splice site variant in SLC35A2 showing developmental delays, spastic paraplegia, and delayed myelination. Mol Genet Genomic Med 7(8):e814. https://doi.org/10.1002/mgg3.814

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsen ASB, Faergeman NJ (2017) Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol 7(5). https://doi.org/10.1098/rsob.170069

Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18(1):26. https://doi.org/10.1186/s12944-019-0965-z

Article  PubMed  PubMed Central  Google Scholar 

Ferreira LF, Moylan JS, Gilliam LA, Smith JD, Nikolova-Karakashian M, Reid MB (2010) Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue. Am J Physiol Cell Physiol 299(3):C552–C560. https://doi.org/10.1152/ajpcell.00065.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Larichaudy J, Zufferli A, Serra F, Isidori AM, Naro F, Dessalle K et al (2012) TNF-alpha- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet Muscle 2(1):2. https://doi.org/10.1186/2044-5040-2-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cowart LA (2010) A novel role for sphingolipid metabolism in oxidant-mediated skeletal muscle fatigue. Focus on “Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue”. Am J Physiol Cell Physiol 299(3):C549–C551. https://doi.org/10.1152/ajpcell.00236.2010

Article  CAS  PubMed  Google Scholar 

Moylan JS, Smith JD, Wolf Horrell EM, McLean JB, Deevska GM, Bonnell MR et al (2014) Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle. Redox Biol 2:910–920. https://doi.org/10.1016/j.redox.2014.07.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaurasia B, Summers SA (2015) Ceramides - lipotoxic inducers of metabolic disorders. Trends Endocrinol Metab 26(10):538–550. https://doi.org/10.1016/j.tem.2015.07.006

Article  CAS  PubMed  Google Scholar 

Borodzicz S, Czarzasta K, Kuch M, Cudnoch-Jedrzejewska A (2015) Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis 14:55. https://doi.org/10.1186/s12944-015-0053-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coblentz PD, Ahn B, Hayward LF, Yoo JK, Christou DD, Ferreira LF (2019) Small-hairpin RNA and pharmacological targeting of neutral sphingomyelinase prevent diaphragm weakness in rats with heart failure and reduced ejection fraction. Am J Physiol Lung Cell Mol Physiol 316(4):L679–LL90. https://doi.org/10.1152/ajplung.00516.2018

Article  PubMed  PubMed Central  Google Scholar 

Zhang C, Qiao S, Wu J, Xu W, Ma S, Zhao B et al (2021) A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet beta cells. Pharmacol Res 165:105416. https://doi.org/10.1016/j.phrs.2020.105416

Article  CAS  PubMed  Google Scholar 

Schuchman EH, Desnick RJ (2017) Types A and B Niemann-Pick disease. Mol Genet Metab 120(1-2):27–33. https://doi.org/10.1016/j.ymgme.2016.12.008

Article  CAS  PubMed  Google Scholar 

Hwang SY, Kim TH, Lee HH (2015) Neutral sphingomyelinase and breast cancer research. J Menopausal Med 21(1):24–27. https://doi.org/10.6118/jmm.2015.21.1.24

Article  PubMed  PubMed Central  Google Scholar 

Hofmann K, Tomiuk S, Wolff G, Stoffel W (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci U S A 97(11):5895–5900. https://doi.org/10.1073/pnas.97.11.5895

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarke CJ, Wu BX, Hannun YA (2011) The neutral sphingomyelinase family: identifying biochemical connections. Adv Enzyme Regul 51(1):51–58. https://doi.org/10.1016/j.advenzreg.2010.09.016

Article  CAS  PubMed  Google Scholar 

Tomiuk S, Zumbansen M, Stoffel W (2000) Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J Biol Chem 275(8):5710–5717. https://doi.org/10.1074/jbc.275.8.5710

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif