SLC38A5 promotes glutamine metabolism and inhibits cisplatin chemosensitivity in breast cancer

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

Article  PubMed  Google Scholar 

Sharma R. Temporal patterns of breast cancer incidence, mortality, disability-adjusted life years and risk factors in 12 South American Countries, 1990–2019: an examination using estimates from the global burden of disease 2019 study. Breast Cancer Res Treat. 2023;202(3):529–40.

Article  PubMed  Google Scholar 

Li J, Sheng D, Chen J, You C, Liu S, Xu H, Chang C. Artificial intelligence in breast imaging: potentials and challenges. Phys Med Biol. 2023. https://doi.org/10.1088/1361-6560/acfade.

Article  PubMed  PubMed Central  Google Scholar 

Thakur P, Dahiya H, Kaushal A, Gupta VK, Saini AK, Saini RV. Exosomal miRNAs as next-generation therapy vehicles in breast cancer. Curr Gene Ther. 2023;23(5):330–42.

Article  CAS  PubMed  Google Scholar 

Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer. 2017;3(3):169–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson PM, Lalla RV. Glutamine for amelioration of radiation and chemotherapy associated mucositis during cancer therapy. Nutrients. 2020;12(6):1675.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li T, Le A. Glutamine metabolism in cancer. Adv Exp Med Biol. 2018;1063:13–32.

Article  CAS  PubMed  Google Scholar 

Yang WH, Qiu Y, Stamatatos O, Janowitz T, Lukey MJ. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 2021;7(8):790–804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

You S, Han X, Xu Y, Yao Q. Research progress on the role of cationic amino acid transporter (CAT) family members in malignant tumors and immune microenvironment. Amino Acids. 2023. https://doi.org/10.1007/s00726-023-03313-1.

Article  PubMed  Google Scholar 

Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta. 2016;1863(10):2531–9.

Article  CAS  PubMed  Google Scholar 

Ramachandran S, Sennoune RS, Sharma M, Thangaraju M, Suresh VV, Sneigowski T, Bhutia YD, Pruitt K, Ganapathy V. Expression and function of SLC38A5, an amino acid-coupled Na+/H+ exchanger, in triple-negative breast cancer and its relevance to macropinocytosis. Biochem J. 2021;478(21):3957–76.

Article  CAS  PubMed  Google Scholar 

Sniegowski T, Korac K, Bhutia YD, Ganapathy V. SLC6A14 and SLC38A5 drive the glutaminolysis and serine-glycine-one-carbon pathways in cancer. Pharmaceuticals (Basel). 2021;14(3):216.

Article  CAS  PubMed  Google Scholar 

Guidi N, Longo VD. Periodic fasting starves cisplatin-resistant cancers to death. EMBO J. 2018;37(14): e99815.

Article  PubMed  PubMed Central  Google Scholar 

Girardi E, César-Razquin A, Lindinger S, Papakostas K, Konecka J, Hemmerich J, Kickinger S, Kartnig F, Gürtl B, Klavins K, et al. A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nat Chem Biol. 2020;16(4):469–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gote V, Nookala AR, Bolla PK, Pal D. Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue. Int J Mol Sci. 2021;22(9):4673.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 2021;12(1):1786.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong X, Bai X, Ni J, Zhang H, Duan W, Graham P, Li Y. Exosomes and breast cancer drug resistance. Cell Death Dis. 2020;11(11):987.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells. 2019;8(9):957.

Article  PubMed  PubMed Central  Google Scholar 

Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med. 2020;52(9):1496–516.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li T, Copeland C, Le A. Glutamine metabolism in cancer. Adv Exp Med Biol. 2021;1311:17–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao D, Zeng L, Yao K, Kong X, Wu G, Yin Y. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids. 2016;48(9):2067–80.

Article  CAS  PubMed  Google Scholar 

Hu X, Jin H, Zhu L. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021;50(1):32–40.

CAS  PubMed  PubMed Central  Google Scholar 

Edwards DN, Ngwa VM, Raybuck AL, Wang S, Hwang Y, Kim LC, Cho SH, Paik Y, Wang Q, Zhang S, et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J Clin Invest. 2021;131(4): e140100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terunuma A, Putluri N, Mishra P, Mathé EA, Dorsey TH, Yi M, Wallace TA, Issaq HJ, Zhou M, Killian JK, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014;124(1):398–412.

Article  CAS  PubMed  Google Scholar 

Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(1):11–31.

Article  CAS  PubMed  Google Scholar 

Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239):762–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y, Hill BG, Dean DC, Clem BF. Control of glutamine metabolism by the tumor suppressor Rb. Oncogene. 2014;33(5):556–66.

Article  CAS  PubMed  Google Scholar 

Zhang X, Han L, Zhang H, Niu Y, Liang R. Identification of potential key genes of TGF-beta signaling associated with the immune response and prognosis of ovarian cancer based on bioinformatics analysis. Heliyon. 2023;9(8): e19208.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sennoune SR, Nandagopal GD, Ramachandran S, Mathew M, Sivaprakasam S, Jaramillo-Martinez V, Bhutia YD, Ganapathy V. Potent inhibition of macropinocytosis by niclosamide in cancer cells: a novel mechanism for the anticancer efficacy for the antihelminthic. Cancers (Basel). 2023;15(3):759.

Article  CAS  PubMed  Google Scholar 

Chen H, Yang W, Ma L, Li Y, Ji Z. Machine-learning based integrating bulk and single-cell RNA sequencing reveals the SLC38A5-CCL5 signaling as a promising target for clear cell renal cell carcinoma treatment. Transl Oncol. 2023;38: 101790.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Todorova VK, Kaufmann Y, Luo S, Klimberg VS. Tamoxifen and raloxifene suppress the proliferation of estrogen receptor-negative cells through inhibition of glutamine uptake. Cancer Chemother Pharmacol. 2011;67(2):285–91.

Article  CAS  PubMed  Google Scholar 

Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, Parisi F, Ruller C, Lau E, Kim H, Brill LM, et al. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell. 2015;27(3):354–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif