Abdel El Naeem HEM, Abdelhamid MHE, Atteya DAM. Impact of augmented renal clearance on enoxaparin therapy in critically ill patients. Egypt J Anaesth. 2017;33(1):113–7.
Li L, Guan Z, Li R, Zhao W, Hao G, Yan Y, et al. Population pharmacokinetics and dosing optimization of metformin in Chinese patients with type 2 diabetes mellitus. Medicine (Baltimore). 2020;99(46): e23212.
Article CAS PubMed Google Scholar
Bilbao-Meseguer I, Barrasa H, Asín-Prieto E, Alarcia-Lacalle A, Rodríguez-Gascón A, Maynar J, et al. Population pharmacokinetics of levetiracetam and dosing evaluation in critically ill patients with normal or augmented renal function. Pharmaceutics. 2021;13(10).
Sime FB, Roberts JA, Jeffree RL, Pandey S, Adiraju S, Livermore A, et al. Population pharmacokinetics of levetiracetam in patients with traumatic brain injury and subarachnoid hemorrhage exhibiting augmented renal clearance. Clin Pharmacokinet. 2021;60(5):655–64.
Article CAS PubMed Google Scholar
Ong CLJ, Goh PSJ, Teo MM, Lim TP, Goh KKK, Ang XY, et al. Pharmacokinetics of levetiracetam in neurosurgical ICU patients. J Crit Care. 2021;64:255–61.
Article CAS PubMed Google Scholar
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, et al. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). J Intensive Care. 2021;9(1):53.
Article PubMed PubMed Central Google Scholar
Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med. 2020;46(6):1127–53.
Article PubMed PubMed Central Google Scholar
Guilhaumou R, Benaboud S, Bennis Y, Dahyot-Fizelier C, Dailly E, Gandia P, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit Care. 2019;23(1):104.
Article PubMed PubMed Central Google Scholar
Reuter SE, Stocker SL, Alffenaar JC, Baldelli S, Cattaneo D, Jones G, et al. Optimal practice for vancomycin therapeutic drug monitoring: position statement from the anti-infectives committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit. 2022;44(1):121–32.
Article CAS PubMed Google Scholar
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47(11):1181–247.
Article PubMed PubMed Central Google Scholar
Dequin PF, Aubron C, Faure H, Garot D, Guillot M, Hamzaoui O, et al. The place of new antibiotics for Gram-negative bacterial infections in intensive care: report of a consensus conference. Ann Intensive Care. 2023;13(1):59.
Article CAS PubMed PubMed Central Google Scholar
Loirat P, Rohan J, Baillet A, Beaufils F, David R, Chapman A. Increased glomerular filtration rate in patients with major burns and its effect on the pharmacokinetics of tobramycin. N Engl J Med. 1978;299(17):915–9.
Article CAS PubMed Google Scholar
Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J. Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet. 49. New Zealand; 2010. p. 1–16.
Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, et al. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care. 2011;15(3):R139.
Article PubMed PubMed Central Google Scholar
Baptista JP, Neves M, Rodrigues L, Teixeira L, Pinho J, Pimentel J. Accuracy of the estimation of glomerular filtration rate within a population of critically ill patients. J Nephrol. 2014;27(4):403–10.
Article CAS PubMed Google Scholar
Troisi C, Cojutti PG, Rinaldi M, Laici C, Siniscalchi A, Viale P, et al. Measuring creatinine clearance is the most accurate way for calculating the proper continuous infusion meropenem dose for empirical treatment of severe gram-negative infections among critically ill patients. Pharmaceutics. 2023;15(2).
• Monteiro E, Fraga Pereira M, Barroso I, Dias CC, Czosnyka M, Paiva JA, et al. Creatinine clearance in acute brain injury: a comparison of methods. Neurocrit Care. 2023. This article highlights the weak correlation between measured and estimated methods, concluding that measured creatinine clearance should be the preferred tool for renal function assessment of the neurocritical care setting.
Wells MA, Morbitzer K, Rhoney DH. Evaluation of the accuracy of standard renal function equations in critically ill patients with subarachnoid hemorrhage. Neurocrit Care. 2020;32(3):828–35.
Tomasa-Irriguible TM, Campos-Gómez A, Manciéo-Contreras JM, Sánchez-Satorra M, Philibert V, Bielsa-Berrocal L, et al. COVID- 19 and augmented renal clearance in critically ill patients. Ann Case Report. 2020;14: 495
Al-Dorzi HM, Alsadhan AA, Almozaini AS, A MA, Tamim H, Sadat M, et al. The performance of equations that estimate glomerular filtration rate against measured urinary creatinine clearance in critically ill patients. Crit Care Res Pract. 2021;2021:5520653.
Wu CC, Tai CH, Liao WY, Wang CC, Kuo CH, Lin SW, et al. Augmented renal clearance is associated with inadequate antibiotic pharmacokinetic/pharmacodynamic target in Asian ICU population: a prospective observational study. Infect Drug Resist. 2019;12:2531–41.
Article CAS PubMed PubMed Central Google Scholar
• Cucci MD, Gerlach AT, Mangira C, Murphy CV, Roberts JA, Udy AA, et al. Performance of different body weights in the Cockcroft-Gault equation in critically ill patients with and without augmented renal clearance: a multicenter cohort. Pharmacotherapy. 2022. Multicentric retrospective study showing that CG performed poorly in ARC patients.
• Brown AR, Lavelle RI, Gerlach AT. Discordance of renal drug dosing using estimated creatinine clearance and measured urine creatinine clearance in hospitalized adults: a retrospective cohort study. Int J Crit Illn Inj Sci. 2020;10(Suppl 1):1–5. Retrospective cohort study showing 25% discordance between renal drug dosing based on mathematical estimates versus 8-h creatinine clearance.
PubMed PubMed Central Google Scholar
Tolouian R, Hassanpour R, Sistanizad M, Kouchek M, Miri MM, Salarian S, et al. Using two predictor scoring systems together to increase the chance of identifying the augmented renal clearance phenomenon: a cross-sectional study. Iran J Kidney Dis. 2022;16(3):179–87.
• Mueller SW, Blass B, Molina KC, Gibson C, Krsak M, Kohler AD, et al. Augmented renal function in burn patients: occurrence and discordance with commonly used methods to assess renal function. J Burn Care Res. 2023. This retrospective, single-center study that encompassed 68 burn patients, reinforced the high prevalence of ARC in this population, occurring in 66.3% of total 12h-CLCR measurements (n = 163).
Tsai D, Udy AA, Stewart PC, Gourley S, Morick NM, Lipman J, et al. Prevalence of augmented renal clearance and performance of glomerular filtration estimates in Indigenous Australian patients requiring intensive care admission. Anaesth Intensive Care. 2018;46(1):42–50.
Article CAS PubMed Google Scholar
• Gijsen M, Wilmer A, Meyfroidt G, Wauters J, Spriet I. Can augmented renal clearance be detected using estimators of glomerular filtration rate? Crit Care. 2020;24(1):359. Multicentric retrospective study showing poor agreement between formulae estimating renal function (CG, CKD-EPI, MDRD) and 24h-CLCRCR.
Article PubMed PubMed Central Google Scholar
• Tomasa-Irriguible TM, Sabater-Riera J, Pérez-Carrasco M, Ortiz-Ballujera P, Díaz-Buendía Y, Navas-Pérez A, et al. Augmented renal clearance. An unnoticed relevant event Sci Prog. 2021;104(2):368504211018580. Large multicentric study involving 561 critically ill patients showing no concordance between the estimation of GFR (CKD-EPI formula) and GFR calculation from the 4h-CLCR.CR.
Huang CY, Güiza F, Wouters P, Mebis L, Carra G, Gunst J, et al. Development and validation of the creatinine clearance predictor machine learning models in critically ill adults. Crit Care. 2023;27(1):272.
Article PubMed PubMed Central Google Scholar
Carrié C, Rubin S, Sioniac P, Breilh D, Biais M. The kinetic glomerular filtration rate is not interchangeable with measured creatinine clearance for prediction of piperacillin underexposure in critically ill patients with augmented renal clearance. Crit Care. 22. England2018. p. 177.
Declercq P, Gijsen M, Meijers B, Schetz M, Nijs S, D’Hoore A, et al. Reliability of serum creatinine-based formulae estimating renal function in non-critically ill surgery patients: focus on augmented renal clearance. J Clin Pharm Ther. 2018;43(5):695–706.
Article CAS PubMed Google Scholar
Johnston BW, Perry D, Habgood M, Joshi M, Krige A. Augmented renal clearance: a retrospective, cohort study of urinary creatinine clearance in critically ill patients in the United Kingdom. J Int Med Res. 2021;49(5):3000605211015573.
Mikami R, Hayakawa M, Imai S, Sugawara M, Takekuma Y. Onset timing and duration of augmented renal clearance in a mixed intensive care unit. J Intensive Care. 2023;11(1):13.
Article PubMed PubMed Central Google Scholar
Egea A, Dupuis C, de Montmollin E, Wicky PH, Patrier J, Jaquet P, et al. Augmented renal clearance in the ICU: estimation, incidence, risk factors and consequences-a retrospective observational study. Ann Intensive Care. 2022;12(1):88.
Article PubMed PubMed Central Google Scholar
Carrié C, Legeron R, Petit L, Ollivier J, Cottenceau V, d’Houdain N, et al. Higher than standard dosing regimen are needed to achieve optimal antibiotic exposure in critically ill patients with augmented renal clearance receiving piperacillin-tazobactam administered by continuous infusion. J Crit Care. 2018;48:66–71.
Tamatsukuri T, Ohbayashi M, Kohyama N, Kobayashi Y, Yamamoto T, Fukuda K, et al. The exploration of population pharmacokinetic model for meropenem in augmented renal clearance and investigation of optimum setting of dose. J Infect Chemother. 2018;24(10):834–40.
Article CAS PubMed Google Scholar
Rhoney DH, Brooks AB, Nelson NR. Augmented renal clearance: an under-recognized phenomenon associated with COVID-19. Crit Care Explor. 2022;4(2): e0617.
Article PubMed PubMed Central Google Scholar
• Dhaese S, Peperstraete H, Hoste E, Van Biesen W, De Waele J. Augmented renal clearance in critically ill COVID-19 patients: forewarned is forearmed. J Crit Care. 2021;66:93–5. Prospective, observational study that reported the occurrence of ARC in at least one day in 72% of 129 critically ill COVID-19 patients. It also observed an early onset of ARC during the course of ICU stay.
Article CAS PubMed PubMed Central Google Scholar
Huang CY, Güiza F, Gijsen M, Spriet I, Dauwe D, Debaveye Y, et al. External validation of the augmented renal clearance predictor in critically ill COVID-19 patients. Antibiotics (Basel). 2023;12(4).
Molina Barragan AM, Pardo E, Galichon P, Hantala N, Gianinazzi AC, Darrivere L, et al. SARS-CoV-2 renal impairment in critical care: an observational study of 42 cases (Kidney COVID). J Clin Med. 2021;10(8).
Murt A, Dincer MT, Karaca C. Augmented renal clearance in COVID-19. Nephron. 2021;145(4):386–7.
Article CAS PubMed Google Scholar
Beunders R, van de Wijgert IH, van den Berg M, van der Hoeven JG, Abdo WF, Pickkers P. Late augmented renal clearance in patients with COVID-19 in the intensive care unit. A prospective observational study. J Crit Care. 2021;64:7–9.
Dang Z, Guo H, Li B, Zhen M, Liu J, Wei Y, et al. Augmented renal clearance in Chinese intensive care unit patients after traumatic brain injury: a cross-sectional study. Chin Med J (Engl). 2022;135(6):750–2.
Campassi ML, Repetto FG, Banegas Litardo DM, Castor R, Gómez G, Tiseyra B, et al. Incidence and determinats of augmented renal clearance in traumatic brain injury: a prospective observational study. J Crit Care. 2022;70: 154065.
Morbitzer KA, Jordan JD, Dehne KA, Durr EA, Olm-Shipman CM, Rhoney DH. Enhanced renal clearance in patients with hemorrhagic stroke. Crit Care Med. 2019;47(6):800–8.
Comments (0)