Antitumor activity of the new tyrphostin briva against BRAFV600E-mutant colorectal carcinoma cells

Pearson G, Robinson F, Gibson TB et al (2001) Mitogen-activated protein (MAP) kinase pathways. Endocr Rev 22:153–183. https://doi.org/10.1210/edrv.22.2.0428

Article  CAS  PubMed  Google Scholar 

Rushworth LK, Hindley AD, O’Neill E, Kolch W (2006) Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26:2262–2272. https://doi.org/10.1128/MCB.26.6.2262-2272.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halle BR, Johnson DB (2021) Defining and targeting BRAF mutations in solid tumors. Curr Treat Options Oncol 22:30. https://doi.org/10.1007/s11864-021-00827-2

Article  PubMed  Google Scholar 

Zhong J, Yan W, Wang C et al (2022) BRAF inhibitor resistance in Melanoma: mechanisms and alternative therapeutic strategies. Curr Treat Options Oncol 23:1503–1521. https://doi.org/10.1007/s11864-022-01006-7

Article  PubMed  PubMed Central  Google Scholar 

Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16:103–109. https://doi.org/10.1517/1472822.2011.645805

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flaherty KT (2011) BRAF inhibitors and Melanoma. Cancer J 17:505–511. https://doi.org/10.1097/PPO.0b013e31823e5357

Article  CAS  PubMed  Google Scholar 

Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in Melanoma with BRAF V600E mutations. N Engl J Med 367:1694–1703. https://doi.org/10.1056/NEJMoa1210093

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho SM, Esmail A, Abdelrahim M (2021) Triple-regimen of verumafenib, irinotecan, and cetuximab for the treatment of BRAFV600E-mutant CRC: a case report and review. Front Pharmacol 12:795381. https://doi.org/10.3389/fphar.2021.795381

Article  PubMed  PubMed Central  Google Scholar 

Eriksen M, Pfeiffer P, Rohrberg KS et al (2022) A phase II study of daily encorafenib in combination with biweekly cetuximab in patients with BRAF V600E mutated metastatic Colorectal cancer: the NEW BEACON study. BMC Cancer 22:1321. https://doi.org/10.1186/s12885-022-10420-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grothey A, Fakih M, Tabernero J (2021) Management of BRAF-mutant metastatic Colorectal cancer: a review of treatment options and evidence-based guidelines. Ann Oncol 32:959–967. https://doi.org/10.1016/j.annonc.2021.03.206

Article  CAS  PubMed  Google Scholar 

Arafa MA, Farhat K (2015) Colorectal cancer in the arab world – screening practices and future prospects. Asian Pac J Cancer Prev 16:7425–7430. https://doi.org/10.7314/apjcp.2015.16.17.7425

Article  PubMed  Google Scholar 

Miele E, Abballe L, Spinelli GP et al (2020) BRAF mutant Colorectal cancer: ErbB2 expression levels as predictive factor for the response to combined BRAF/ErbB inhibitors. BMC Cancer 20:129. https://doi.org/10.1186/s12885-020-6586-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA (2010) BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal 3:ra84–ra84. https://doi.org/10.1126/scisignal.2001148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reddy KB, Mangold GL, Tandon AK et al (1991) Inhibition of Breast cancer cell growth in vitro by a tyrosine kinase inhibitor. Cancer Res 52:3636–3641

Google Scholar 

Yoneda T, Lyall RM, Alsina MM et al (1991) The antiproliverative effects of tyrosine kinase inhibitors tyrphostins on a human squamous cell carcinoma in vitro and in nude mice. Cancer Res 51:4430–4435

CAS  PubMed  Google Scholar 

Wells G, Seaton A, Stevens MF (2000) Structural studies on bioactive compounds. 32. Oxidation of tyrphostin protein tyrosine kinase inhibitors with hypervalent iodine reagents. J Med Chem 43:1550–1562. https://doi.org/10.1021/jm990947f

Article  CAS  PubMed  Google Scholar 

Biersack B, Zoldakova M, Effenberger K, Schobert R (2010) (Arene)Ru(II) complexes of epidermal growth factor receptor inhibiting tyrphostins with enhanced selectivity and cytotoxicity in cancer cells. Eur J Med Chem 45:1972–1975. https://doi.org/10.1016/j.ejmech.2010.01.040

Article  CAS  PubMed  Google Scholar 

Tcherniuk S, Skoufias DA, Labriere C et al (2010) Relocation of aurora B and surviving from centromeres to the central spindle impaired by a kinesin-specific MKLP-2 inhibitor. Angew Chem Int Ed 49:8228–8231. https://doi.org/10.1002/anie.201003254

Article  CAS  Google Scholar 

Tarleton M, Gilbert J, Sakoff JA, McCluskey A (2012) Cytotoxic 2-phenylacrylnitriles, the importance of the Cyanide moiety and discovery of potent broad spectrum cytotoxic agents. Eur J Med Chem 57:65–73. https://doi.org/10.1016/j.ejmech.2012.09.019

Article  CAS  PubMed  Google Scholar 

Tarleton M, Gilbert J, Robertson MJ, McCluskey A, Sakoff JA (2011) Library synthesis and cytotoxicity of a family of 2-phenylacrylonitriles and discovery of an estrogen dependent Breast cancer lead compound. Med Chem Commun 2:31–37. https://doi.org/10.1039/C0MD00147C

Article  CAS  Google Scholar 

Penthala NR, Janganati V, Bommagani S, Crooks PA (2014) Synthesis and evaluation of a series of quinolinyl trans-cyanostilbene analogs as anticancer agents. Med Chem Commun 5:886–890. https://doi.org/10.1039/C4MD00115J

Article  CAS  Google Scholar 

Penthala NR, Sonar VN, Horn J, Leggas M, Yadlapalli JSKB, Crooks PA (2013) Synthesis and evaluation of a series of benzothiophene acrylonitrile analogs as anticancer agents. Med Chem Commun 4:1073–1078. https://doi.org/10.1039/C3MD00120J

Article  CAS  Google Scholar 

Carta A, Briguglio I, Piras S et al (2011) 3-Aryl-2-[1H-benzotriazol-1-yl]acrylonitriles: a novel class of potent tubulin inhibitors. Eur J Med Chem 46:4151–4167. https://doi.org/10.1016/j.ejmech.2011.06.018

Article  CAS  PubMed  Google Scholar 

Quiroga J, Cobo D, Insuasty B et al (2007) Synthesis and evaluation of novel E-2-(2-thienyl)- and Z-2-(3-thienyl)-3-acrylonitriles as antifungal and anticancer agents. Arch Pharm Chem Life Sci 340:603–606. https://doi.org/10.1002/ardp.200700082

Article  CAS  Google Scholar 

Yamazaki R, Nishiyama Y, Furuta T et al (2011) Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo. Mol Cancer Ther 10:1252–1263. https://doi.org/10.1158/1535-7163.MCT-10-0874

Article  CAS  PubMed  Google Scholar 

Schaller E, Ma A, Gosch LC et al (2021) New 3-aryl-2-(2-thienyl)acrylonitriles with high activity against hepatoma cells. Int J Mol Sci 22:2243. https://doi.org/10.3390/ijms22052243

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alam MS, Nam Y-J, Lee D-U (2013) Synthesis and evaluation of (Z)-2,3-diphenylacrylonitrile analogs as anti-cancer and anti-microbial agents. Eur J Med Chem 69:790–797. https://doi.org/10.1016/j.ejmech.2013.08.031

Article  CAS  PubMed  Google Scholar 

Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

Article  CAS  PubMed  Google Scholar 

Munshi A, Hobbs M, Meyn RE (2005) Clonogenic cell survival assay. Methods Mol Med 110:21–28. https://doi.org/10.1385/1-59259-869-2:021

Article  PubMed  Google Scholar 

Tahtamouni L, Alzghoul A, Alderfer S, Sun J, Ahram M, Prasad A, Bamburg J (2022) The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS ONE 17:e0279746. https://doi.org/10.1371/journal.pone.0279746

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bello-Alvarez C, Moral-Morales AD, González-Arenas A, Camacho-Arroyo I (2021) Intracellular progesterone receptor and cSrc protein working together to regulate the activity of proteins involved in migration and invasion of human glioblastoma cells. Front Endocrinol 12:640298. https://doi.org/10.3389/fendo.2021.640298

Article  Google Scholar 

Abe T, Sakagami H, Amano S et al (2023) A comparative study of tumor-specificity and neurotoxicity between 3-styrylchromones and anti-cancer Drugs. Medicines 10:43. https://doi.org/10.3390/medicines10070043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537. https://doi.org/10.1016/s0008-6363(99)00384-3

Article  CAS  PubMed  Google Scholar 

Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643. https://doi.org/10.1038/nrm2957

Article  CAS  PubMed 

留言 (0)

沒有登入
gif