Cai X, Mipam TD, Zhao FF, Sun L. SNPs detected in the yak MC4R gene and their association with growth traits. Animal. 2015;9(7):1097–103.
Article CAS PubMed Google Scholar
Zhang L, Qi M, Li Y, Han X, Zhu Y, Yu J. Investigation analysis and countermeasure suggestions of yak industry in Tibet Nagqu. Mod J Anim Husb Veterinary Med. 2021;50(04):66–70.
Li Y. Analysis of the status quo, existing problems and development countermeasures of yak breeding. China Agric Inform. 2017;24:69–70.
Hou Z, Fu Q, Huang Y, Zhang P, Chen F, Li M, Xu Z, Yao S, Chen D, Zhang M. Erratum to comparative proteomic identification of capacitation and noncapacitation swamp buffalo spermatozoa. Theriogenology. 2019;128:R1.
Sutovsky P. Review: Sperm-oocyte interactions and their implications for bull fertility, with emphasis on the ubiquitin-proteasome system. Animal. 2018;12(s1):s121–32.
Article CAS PubMed PubMed Central Google Scholar
Kasimanickam RK, Kasimanickam VR, Arangasamy A, Kastelic JP. Sperm and seminal plasma proteomics of high- versus low-fertility Holstein bulls. Theriogenology. 2019;126:41–8.
Article CAS PubMed Google Scholar
KM M, Kumaresan A, Yadav S, Mohanty TK, Datta TK. Comparative proteomic analysis of high- and low-fertile buffalo bull spermatozoa for identification of fertility-associated proteins. Reprod Domest Anim. 2019;54(5):786–94.
Wu X. Screening and identification of candidate proteins for meat quality traits of yak. Beijing, Chinese Academy of Agricultural Sciences. 2015.
Li M, Wu X, Guo X, Bao P, Ding X, Chu M, Liang C, Yan P. Comparative iTRAQ proteomics revealed proteins associated with horn development in yak. Proteome Sci. 2018;16:14.
Article PubMed PubMed Central Google Scholar
Ruan C, Wang J, Yang Y, Hu J, Ma Y, Zhang Y, Zhao X. Proteomic analysis of Tianzhu White Yak (Bos grunniens) testis at different sexual developmental stages. Anim Sci J. 2019;90(3):333–43.
Article CAS PubMed Google Scholar
Fu W, Li C, Huang L, Liu W, Jin S, Lin Y, Zheng Y. Comparison of testis proteins between adult yak and bisexual yak by two-dimensional electrophoresis. Sichuan J Zool. 2014;33(01):51–5.
Pu M, Ge X. Observation of the effect of modified Papanicolaou staining. Chin J Clin Exp Pathol. 1995;11(02):162–163.
Zhao Y, Wang Y, Guo F, Lu B, Sun J, Wang J, Ren Z. iTRAQ-based proteomic analysis of sperm reveals candidate proteins that affect the quality of spermatozoa from boars on plateaus. Proteome Sci. 2021;19: 9.
Article CAS PubMed PubMed Central Google Scholar
Wisniewski JR, Zougman A, Mann M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res. 2009;8(12):5674–8.
Article CAS PubMed Google Scholar
GO and KEGG analytics software. https://international.biocloud.net/zh/dashboard.
STRING online software. https://string-db.org/.
Pratim DP, Sultana BS, Choudhury M, Medhi D, Paul V, Jyoti DP. Characterizing miRNA and mse-tsRNA in fertile and subfertile yak bull spermatozoa from Arunachal Pradesh. J Genet. 2020;99:88.
Govindaraju A, Dogan S, Rodriguez-Osorio N, Grant K, Kaya A, Memili E. Delivering value from sperm proteomics for fertility. Cell Tissue Res. 2012;349(3):783–93.
Article CAS PubMed Google Scholar
Marquez B, Suarez SS. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. Biol Reprod. 2004;70(6):1626–33.
Article CAS PubMed Google Scholar
Suolang Z, Zhu Y, Suo L, Li X,Luosang Z, Hu J, Ci Y. Influencing factors and improvement strategies of yak reproductive performance. Mod Agric Sci Technol. 2021;50(19):189–90.
Fan Y, Li X, Guo Y, He X, Wang Y, Zhao D, Ma Y, Feng X, Zhang J, Li J, et al. TMT-based quantitative proteomics analysis reveals the differential proteins between fresh and frozen-thawed sperm of yak (Bos grunniens). Theriogenology. 2023;200:60–9.
Article CAS PubMed Google Scholar
Ashwitha A, Ramesha KP, Ramesh P, Kootimole CN, Devadasan MJ, Ammankallu S, Jeyakumar S, Kumaresan A, Veerappa VG, Das DN, et al. Quantitative proteomics profiling of spermatozoa and seminal plasma reveals proteins associated with semen quality in Bos indicus bulls. J Proteom. 2023;273:104794.
Chen X, Li Z, Lv Y, Han Y, Qu X, Zhang Y, Jin Y. Comparative proteomic identification of capacitated and non-capacitated sperm of Yanbian Yellow Cattle. Theriogenology. 2022;186:12–20.
Article CAS PubMed Google Scholar
Guterman A, Glickman MH. Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr Protein Pept Sci. 2004;5(3):201–11.
Article CAS PubMed Google Scholar
Yi YJ, Manandhar G, Sutovsky M, Jonakova V, Park CS, Sutovsky P. Inhibition of 19S proteasomal regulatory complex subunit PSMD8 increases polyspermy during porcine fertilization in vitro. J Reprod Immunol. 2010;84(2):154–63.
Article CAS PubMed Google Scholar
Meng M, Wilczynska M, Kleczkowski LA. Molecular and kinetic characterization of two UDP-glucose pyrophosphorylases, products of distinct genes, from Arabidopsis. Biochim Biophys Acta. 2008;1784(6):967–72.
Article CAS PubMed Google Scholar
Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, Zhao J, Sun M, He R, He G. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell. 2007;19(3):847–61.
Article CAS PubMed PubMed Central Google Scholar
Li J, Baroja-Fernandez E, Bahaji A, Munoz FJ, Ovecka M, Montero M, Sesma MT, Alonso-Casajus N, Almagro G, Sanchez-Lopez AM, et al. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol. 2013;54(2):282–94.
Article CAS PubMed Google Scholar
Zrenner R, Willmitzer L, Sonnewald U. Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA. Planta. 1993;190(2):247–52.
Article CAS PubMed Google Scholar
Kleczkowski LA, Geisler M, Ciereszko I, Johansson H. UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol. 2004;134(3):912–8.
Article CAS PubMed PubMed Central Google Scholar
Katsube T, Kazuta Y, Mori H, Nakano K, Tanizawa K, Fukui T. UDP-glucose pyrophosphorylase from potato tuber: cDNA cloning and sequencing. J Biochem. 1990;108(2):321–6.
Article CAS PubMed Google Scholar
Kim H, Yang J, Kim MJ, Choi S, Chung JR, Kim JM, Yoo YH, Chung J, Koh H. Tumor necrosis factor receptor-associated protein 1 (TRAP1) mutation and TRAP1 inhibitor gamitrinib-triphenylphosphonium (G-TPP) induce a Forkhead Box O (FOXO)-dependent cell Protective Signal from Mitochondria. J Biol Chem. 2016;291(4):1841–53.
Article CAS PubMed Google Scholar
Yang J, Kim MJ, Yoon W, Kim EY, Kim H, Lee Y, Min B, Kang KS, Son JH, Park HT, et al. Isocitrate protects DJ-1 null dopaminergic cells from oxidative stress through NADP+-dependent isocitrate dehydrogenase (IDH). PLos Genet. 2017;13(8): e1006975.
Article PubMed PubMed Central Google Scholar
Haslbeck M, Weinkauf S, Buchner J. Small heat shock proteins: simplicity meets complexity. J Biol Chem. 2019;294(6):2121–32.
Article CAS PubMed Google Scholar
Kampinga HH, Garrido C. HSPBs: small proteins with big implications in human disease. Int J Biochem Cell Biol. 2012;44(10):1706–10.
Article CAS PubMed Google Scholar
Garrido C, Paul C, Seigneuric R, Kampinga HH. The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol. 2012;44(10):1588–92.
Article CAS PubMed Google Scholar
Liu X, Wang X, Liu F. Decreased expression of heat shock protein A4L in spermatozoa is positively related to poor human sperm quality. Mol Reprod Dev. 2019;86(4):379–86.
Article CAS PubMed Google Scholar
Hough R, Pratt G, Rechsteiner M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J Biol Chem. 1986;261(5):2400–8.
Comments (0)