Erosion mitigation with biocementation: a review on applications, challenges, & future perspectives

Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201–202:178–184. https://doi.org/10.1016/j.jhazmat.2011.11.067

Article  CAS  Google Scholar 

Al Qabany A, Soga K (2013) Effect of chemical treatment used in MICP on engineering properties of cemented soils. Géotechnique 63:331–339. https://doi.org/10.1680/geot.SIP13.P.022

Article  Google Scholar 

Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sustain Energy Rev 15:2252–2261. https://doi.org/10.1016/j.rser.2011.02.014

Article  CAS  Google Scholar 

Alshalif AF, Irwan JM, Othman N, Anneza LH (2016) Isolation of sulphate reduction bacteria (SRB) to Improve compress strength and water penetration of bio-concrete. MATEC Web Conf 47:01016. https://doi.org/10.1051/matecconf/20164701016

Article  CAS  Google Scholar 

Altermann W, Kazmierczak J, Oren A, Wright DT (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of earth history. Geobiology 4:147–166. https://doi.org/10.1111/j.1472-4669.2006.00076.x

Article  CAS  Google Scholar 

Amin M, Zomorodian SMA, O’Kelly BC (2017) Reducing the hydraulic erosion of sand using microbial-induced carbonate precipitation. Proc Inst Civ Eng Gr Improv 170:112–122. https://doi.org/10.1680/jgrim.16.00028

Article  Google Scholar 

Anbu P, Kang CH, Shin YJ, So JS (2016) Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 5:1–26. https://doi.org/10.1186/s40064-016-1869-2

Article  CAS  Google Scholar 

Arp G, Reimer A, Reitner J (1999) Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur J Phycol 34:393–403. https://doi.org/10.1080/09670269910001736452

Article  Google Scholar 

Bagnold RA (1984) The Physics of blown sand and desert dunes. Wiley, New York

Google Scholar 

Barkouki TH, Martinez BC, Mortensen BM et al (2011) Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments. Transp Porous Media 90:23–39. https://doi.org/10.1007/s11242-011-9804-z

Article  CAS  Google Scholar 

Baskar S, Baskar R, Lee N, Theophilus PK (2009) Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: Some evidences on biogenic activities. Environ Geol 57:1169–1186. https://doi.org/10.1007/s00254-008-1413-y

Article  CAS  Google Scholar 

Behzadipour H, Sadrekarimi A (2021) Biochar-assisted bio-cementation of a sand using native bacteria. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-021-02235-0

Article  Google Scholar 

Ben CK, Rodri C, Teresa Gonza M et al (2004) Precipitation and growth morphology of calcium carbonate induced by myxococcus xanthus: implications for recognition of bacterial carbonates. J Sediment Res 74:1527–1404

Google Scholar 

Bibi S, Oualha M, Ashfaq MY et al (2018) Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Adv 8:5854–5863. https://doi.org/10.1039/C7RA12758H

Article  CAS  Google Scholar 

Bordoloi S, Ng CWW (2020) The effects of vegetation traits and their stability functions in bio-engineered slopes: a perspective review. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105742

Article  Google Scholar 

Briaud J-L (2008) Case histories in soil and rock erosion: woodrow wilson bridge, brazos river meander, normandy cliffs, and new orleans levees. J Geotech Geoenviron Eng 134:1425–1447. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425)

Article  Google Scholar 

Briaud J-L (2013) Geotechnical engineering: unsaturated and saturated soils. Wiley, Hoboken

Book  Google Scholar 

Burbank MB, Weaver TJ, Green TL et al (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28:301–312. https://doi.org/10.1080/01490451.2010.499929

Article  Google Scholar 

Burrell AL, Evans JP, De Kauwe MG (2020) Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-17710-7

Article  CAS  Google Scholar 

Caesar KH, Kyle JR, Lyons TW et al (2019) Carbonate formation in salt dome cap rocks by microbial anaerobic oxidation of methane. Nat Commun. https://doi.org/10.1038/s41467-019-08687-z

Article  Google Scholar 

Carter MS, Tuttle MJ, Mancini JA et al (2023) Microbially induced calcium carbonate precipitation by sporosarcina pasteurii : a case study in optimizing biological CaCO3 precipitation. Appl Environ Microbiol. https://doi.org/10.1128/aem.01794-22

Article  Google Scholar 

Castro-Alonso MJ, Montañez-Hernandez LE, Sanchez-Muñoz MA et al (2019) Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front Mater 6:1–15. https://doi.org/10.3389/fmats.2019.00126

Article  Google Scholar 

Chandra A, Ravi K (2020) Effect of magnesium incorporation in enzyme-induced carbonate precipitation (EICP) to improve shear strength of soil. In: Lecture Notes in Civil Engineering. pp 333–346

Chek A, Crowley R, Ellis TN et al (2021) Evaluation of factors affecting erodibility improvement for MICP-treated beach sand. J Geotech Geoenviron Eng 147:04021001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002481

Article  CAS  Google Scholar 

Chen F, Deng C, Song W et al (2016) Biostabilization of desert sands using bacterially induced calcite precipitation. Geomicrobiol J 33:243–249. https://doi.org/10.1080/01490451.2015.1053584

Article  CAS  Google Scholar 

Cheng L, Cord-Ruwisch R (2014) Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation. Geomicrobiol J 31:396–406. https://doi.org/10.1080/01490451.2013.836579

Article  CAS  Google Scholar 

Cheng L, Shahin MA (2016) Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation. Can Geotech J 53:1376–1385. https://doi.org/10.1139/cgj-2015-0635

Article  CAS  Google Scholar 

Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50:81–90. https://doi.org/10.1139/cgj-2012-0023

Article  CAS  Google Scholar 

Cheng L, Shahin MA, Cord-Ruwisch R (2014) Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Geotechnique 64:1010–1013. https://doi.org/10.1680/geot.14.T.025

Article  Google Scholar 

Cheng L, Shahin MA, Chu J (2019) Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech 14:615–626. https://doi.org/10.1007/s11440-018-0738-2

Article  Google Scholar 

Choi S, Wu S, Chu J (2016) Biocementation for sand using an eggshell as calcium source. J Geotech Geoenviron Eng 142:2–5. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534

Article  Google Scholar 

Choi S-G, Park S-S, Wu S, Chu J (2017) Methods for calcium carbonate content measurement of biocemented soils. J Mater Civ Eng 29:1–4. https://doi.org/10.1061/(ASCE)

Article  Google Scholar 

Chu J, Ivanov V, Naeimi M et al (2014) Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech 9:277–285. https://doi.org/10.1007/s11440-013-0278-8

Article  Google Scholar 

Chung H, Kim SH, Nam K (2021) Application of microbially induced calcite precipitation to prevent soil loss by rainfall: effect of particle size and organic matter content. J Soils Sediments 21:2744–2754. https://doi.org/10.1007/s11368-020-02757-2

Article  CAS  Google Scholar 

Cizer Ö, Rodriguez-Navarro C, Ruiz-Agudo E et al (2012) Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime. J Mater Sci 47:6151–6165. https://doi.org/10.1007/s10853-012-6535-7

Article  CAS  Google Scholar 

Clarà Saracho A, Haigh SK, Ehsan Jorat M (2021a) Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand. Géotechnique 71:1135–1149. https://doi.org/10.1680/jgeot.19.P.350

Article  Google Scholar 

Clarà Saracho A, Lucherini L, Hirsch M et al (2021b) Controlling the calcium carbonate microstructure of engineered living building materials. J Mater Chem A 9:24438–24451. https://doi.org/10.1039/d1ta03990c

Article  CAS  Google Scholar 

Coban O, De Deyn GB, van der Ploeg M (2022) Soil microbiota as game-changers in restoration of degraded lands. Science 80(375):abe0725. https://doi.org/10.1126/science.abe0725

Article  CAS  Google Scholar 

Colica G, Li H, Rossi F et al (2014) Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem 68:62–70. https://doi.org/10.1016/j.soilbio.2013.09.017

Article  CAS  Google Scholar 

Cuthbert MO, Riley MS, Handley-Sidhu S et al (2012) Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation. Ecol Eng 41:32–40. https://doi.org/10.1016/j.ecoleng.2012.01.008

Article  Google Scholar 

D’Odorico P, Bhattachan A, Davis KF et al (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344. https://doi.org/10.1016/j.advwatres.2012.01.013

Article  Google Scholar 

Dagliya M, Satyam N, Sharma M, Garg A (2022) Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2021.12.008

Article  Google Scholar 

Das TK, Haldar SK, Das GI, Sen S (2014) River bank erosion induced human displacement and its consequences. Living Rev Landsc Res 8:1–35. https://doi.org/10.12942/lrlr-2014-3

Article  Google Scholar 

Datta S, Manna S, Roy D (2022) Attachment of extracellular metabolic products of lysinibacillus sp. DRG3 on sand surface under variable flow velocities and bioprocesses. J Environ Eng 148:1–13. https://doi.org/10.1061/(asce)ee.1943-7870.0002072

Article  CAS 

留言 (0)

沒有登入
gif