Radiomics nomogram for predicting axillary lymph node metastasis—a potential method to address the limitation of axilla coverage in cone-beam breast CT: a bi-center retrospective study

Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33

Article  PubMed  Google Scholar 

Gradishar WJ, Moran MS, Abraham J et al (2022) Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 20:691–722

Article  Google Scholar 

Giuliano AE, Hunt KK, Ballman KV et al (2011) Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 305:569–575

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Y, Li X, Wang F et al (2018) Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging in characterization of axillary lymph nodes: preliminary animal experience. Magn Reson Imaging 52:46–52

Article  PubMed  Google Scholar 

Ahn HS, Jang M, Kim SM et al (2019) Usefulness of preoperative breast magnetic resonance imaging with a dedicated axillary sequence for the detection of axillary lymph node metastasis in patients with early ductal breast cancer. Radiol Med 124:1220–1228

Article  PubMed  Google Scholar 

Chung HL, Sun J, Leung JWT (2021) Breast cancer skip metastases: frequency, associated tumor characteristics, and role of staging nodal ultrasound in detection. AJR Am J Roentgenol 217:835–844

Article  PubMed  Google Scholar 

Pesek S, Ashikaga T, Krag LE, Krag D (2012) The false-negative rate of sentinel node biopsy in patients with breast cancer: a meta-analysis. World J Surg 36:2239–2251

Article  PubMed  PubMed Central  Google Scholar 

Li H, Yin L, He N et al (2019) Comparison of comfort between cone beam breast computed tomography and digital mammography. Eur J Radiol 120:108674

Article  PubMed  Google Scholar 

Zhu Y, O’Connell AM, Ma Y et al (2022) Dedicated breast CT: state of the art-part I. historical evolution and technical aspects. Eur Radiol 32:1579–1589

Article  PubMed  Google Scholar 

Zhu Y, O’Connell AM, Ma Y et al (2022) Dedicated breast CT: state of the art-part II. clinical application and future outlook. Eur Radiol 32:2286–2300

Article  PubMed  Google Scholar 

O’Connell AM, Karellas A, Vedantham S, Kawakyu-O’Connor DT (2018) Newer technologies in breast cancer imaging: dedicated cone-beam breast computed tomography. Semin Ultrasound CT MR 39:106–113

Article  PubMed  Google Scholar 

O’Connell AM, Marini TJ, Kawakyu-O’Connor DT (2021) Cone-beam breast computed tomography: time for a new paradigm in breast imaging. J Clin Med 10:5135

Article  PubMed  PubMed Central  Google Scholar 

Liu A, Ma Y, Yin L et al (2023) Comparison of malignant calcification identification between breast cone-beam computed tomography and digital mammography. Acta Radiol 64:962–970

Article  PubMed  Google Scholar 

He N, Wu YP, Kong Y et al (2016) The utility of breast cone-beam computed tomography, ultrasound, and digital mammography for detecting malignant breast tumors: a prospective study with 212 patients. Eur J Radiol 85:392–403

Article  PubMed  Google Scholar 

Wienbeck S, Uhlig J, Luftner-Nagel S et al (2017) The role of cone-beam breast-CT for breast cancer detection relative to breast density. Eur Radiol 27:5185–5195

Article  PubMed  Google Scholar 

Wienbeck S, Fischer U, Luftner-Nagel S, Lotz J, Uhlig J (2018) Contrast-enhanced cone-beam breast-CT (CBBCT): clinical performance compared to mammography and MRI. Eur Radiol 28:3731–3741

Article  PubMed  Google Scholar 

Uhlig J, Fischer U, Biggemann L, Lotz J, Wienbeck S (2019) Pre- and post-contrast versus post-contrast cone-beam breast CT: can we reduce radiation exposure while maintaining diagnostic accuracy? Eur Radiol 29:3141–3148

Article  PubMed  Google Scholar 

Zhu Y, Zhang Y, Ma Y et al (2020) Cone-beam breast CT features associated with HER2/neu overexpression in patients with primary breast cancer. Eur Radiol 30:2731–2739

Article  PubMed  Google Scholar 

Ma Y, Liu A, O’Connell AM et al (2021) Contrast-enhanced cone beam breast CT features of breast cancers: correlation with immunohistochemical receptors and molecular subtypes. Eur Radiol 31:2580–2589

Article  PubMed  Google Scholar 

Wienbeck S, Uhlig J, Fischer U et al (2019) Breast lesion size assessment in mastectomy specimens: correlation of cone-beam breast-CT, digital breast tomosynthesis and full-field digital mammography with histopathology. Medicine (Baltimore) 98:e17082

Article  PubMed  Google Scholar 

Wang Y, Zhao M, Ma Y et al (2023) Accuracy of preoperative contrast-enhanced cone beam breast CT in assessment of residual tumor after neoadjuvant chemotherapy: a comparative study with breast MRI. Acad Radiol 30:1805–1815

Article  PubMed  Google Scholar 

Ma Y, Cao Y, Liu A et al (2019) A reliability comparison of cone-beam breast computed tomography and mammography: breast density assessment referring to the fifth edition of the BI-RADS atlas. Acad Radiol 26:752–759

Article  PubMed  Google Scholar 

Liu A, Yin L, Ma Y et al (2022) Quantitative breast density measurement based on three-dimensional images: a study on cone-beam breast computed tomography. Acta Radiol 63:1023–1031

Article  PubMed  Google Scholar 

O’Connell A, Conover DL, Zhang Y et al (2010) Cone-beam CT for breast imaging: radiation dose, breast coverage, and image quality. AJR Am J Roentgenol 195:496–509

Article  PubMed  Google Scholar 

O’Connell AM, Kawakyu-O’Connor D (2012) Dedicated cone-beam breast computed tomography and diagnostic mammography: comparison of radiation dose, patient comfort, and qualitative review of imaging findings in BI-RADS 4 and 5 lesions. J Clin Imaging Sci 2:7

Article  PubMed  PubMed Central  Google Scholar 

Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E (2021) A deep look into radiomics. Radiol Med 126:1296–1311

Article  PubMed  PubMed Central  Google Scholar 

Vicini S, Bortolotto C, Rengo M et al (2022) A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers. Radiol Med 127:819–836

Article  PubMed  Google Scholar 

Chen C, Qin Y, Chen H, Zhu D, Gao F, Zhou X (2021) A meta-analysis of the diagnostic performance of machine learning-based MRI in the prediction of axillary lymph node metastasis in breast cancer patients. Insights Imaging 12:156

Article  PubMed  PubMed Central  Google Scholar 

Gong X, Guo Y, Zhu T, Peng X, Xing D, Zhang M (2022) Diagnostic performance of radiomics in predicting axillary lymph node metastasis in breast cancer: a systematic review and meta-analysis. Front Oncol 12:1046005

Article  PubMed  PubMed Central  Google Scholar 

Caballo M, Hernandez AM, Lyu SH et al (2021) Computer-aided diagnosis of masses in breast computed tomography imaging: deep learning model with combined handcrafted and convolutional radiomic features. J Med Imaging (Bellingham) 8:024501

PubMed  Google Scholar 

Caballo M, Pangallo DR, Sanderink W et al (2021) Multi-marker quantitative radiomics for mass characterization in dedicated breast CT imaging. Med Phys 48:313–328

Article  PubMed  Google Scholar 

Ma J, He N, Yoon JH et al (2021) Distinguishing benign and malignant lesions on contrast-enhanced breast cone-beam CT with deep learning neural architecture search. Eur J Radiol 142:109878

Article  PubMed  Google Scholar 

Wang D, Hu Y, Zhan C, Zhang Q, Wu Y, Ai T (2022) A nomogram based on radiomics signature and deep-learning signature for preoperative prediction of axillary lymph node metastasis in breast cancer. Front Oncol 12:940655

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Li X, Zhu L et al (2022) Preoperative prediction of axillary lymph node metastasis in breast cancer based on intratumoral and peritumoral DCE-MRI radiomics nomogram. Contrast Media Mol Imaging 2022:6729473

Article  PubMed  PubMed Central  Google Scholar 

Zhang X, Yang Z, Cui W et al (2021) Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer. Eur Radiol 31:5924–5939

Article  PubMed  Google Scholar 

Qiu Y, Zhang X, Wu Z et al (2022) MRI-based radiomics nomogram: prediction of axillary non-sentinel lymph node metastasis in patients with sentinel lymph node-positive breast cancer. Front Oncol 12:811347

Article  PubMed  PubMed Central  Google Scholar 

Newell D, Nie K, Chen JH et al (2010) Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement. Eur Radiol 20:771–781

Article  PubMed  Google Scholar 

Gallego-Ortiz C, Martel AL (2016) Improving the accuracy of computer-aided diagnosis for breast MR imaging by differentiating between mass and nonmass lesions. Radiology 278:679–688

Article  PubMed  Google Scholar 

Ma Y, Liu A, Zhang Y et al (2022) Comparison of background parenchymal enhancement (BPE) on contrast-enhanced cone-beam breast CT (CE-CBBCT) and breast MRI. Eur Radiol 32:5773–5782

Article  CAS  PubMed  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107

Article 

留言 (0)

沒有登入
gif