p53 dry gene powder enhances anti-cancer effects of chemotherapy against malignant pleural mesothelioma

Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21:2636–44.

Article  CAS  PubMed  Google Scholar 

Mnohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31:15–25.

Article  Google Scholar 

Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics 2018;73:e478s.

Article  PubMed  PubMed Central  Google Scholar 

Xu C, Hu Y, Chen B, Li D, Liang R, Shen M, et al. Metastasis-associated gene 1 (MTA1) enhances cisplatin resistance of malignant pleural mesothelioma by ATR-Chk1-mediated DNA repair. Ann Transl Med. 2021;9:670.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giuliano M, Catalano A, Strizzi L, Vianale G, Capogrossi M, Procopio A. Adenovirus-mediated wild-type p53 over-expression reverts tumourigenicity of human mesothelioma cells. Int J Mol Med. 2000;5:591–6.

CAS  PubMed  Google Scholar 

Li Q, Kawamura K, Yamanaka M, Okamoto S, Yang S, Yamauchi S, et al. Upregulated p53 expression activates apoptotic pathways in wild-type p53-bearing mesothelioma and enhances cytotoxicity of cisplatin and pemetrexed. Cancer Gene Ther. 2012;19:218–28.

Article  CAS  PubMed  Google Scholar 

Mohri K, Okuda T, Mori A, Danjo K, Okamoto H. Optimized pulmonary gene transfection in mice by spray–freeze dried powder inhalation. J Control Release. 2010;144:221–6.

Article  CAS  PubMed  Google Scholar 

Mizuno T, Mohri K, Nasu S, Danjo K, Okamoto H. Dual imaging of pulmonary delivery and gene expression of dry powder inhalant by fluorescence and bioluminescence. J Control Release. 2009;134:149–54.

Article  CAS  PubMed  Google Scholar 

Ito T, Okuda T, Takashima Y, Okamoto H. Naked pDNA inhalation powder composed of hyaluronic acid exhibits high gene expression in the lungs. Mol Pharm. 2019;16:489–97.

Article  CAS  PubMed  Google Scholar 

Asai A, Okuda T, Sonoda E, Yamauchi T, Kato S, Okamoto H. Drug permeation characterization of inhaled dry powder formulations in air-liquid interfaced cell layer using an improved, simple apparatus for dispersion. Pharm. Res. 2016;33:487–97.

Article  CAS  PubMed  Google Scholar 

Ito T, Okuda T, Takayama R, Okamoto H. Establishment of an evaluation method for gene silencing by serial pulmonary administration of siRNA and pDNA powders: naked siRNA inhalation powder suppresses luciferase gene expression in the lung. J Pharm Sci. 2019;108:2661–7.

Article  CAS  PubMed  Google Scholar 

Goodison S, Urquidi V, Tarin D. CD44 cell adhesion molecules. Mol Pathol. 1999;52:189–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim E, Yang J, Park J, Kim S, Kim NH, et al. Consecutive targetable smart nanoprobe for molecular recognition of cytoplasmic microRNA in metastatic breast cancer. ACS Nano. 2012;6:8525–35.

Article  CAS  PubMed  Google Scholar 

Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11:254–67.

Article  PubMed  Google Scholar 

Attanoos RL, Dallimore NS, Gibbs AR. Primary epithelioid haemangioendothelioma of the peritoneum: an unusual mimic of diffuse malignant mesothelioma. Histopathology. 1997;30:375–7.

Article  CAS  PubMed  Google Scholar 

Stefano ID, Battaglia A, Zannoni GF, Prisco MG, Fattorossi A, Travaglia D, et al. Hyaluronic acid-paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts. Cancer Chemother Pharmacol. 2011;68:107–16.

Article  CAS  PubMed  Google Scholar 

Bassi PF, Volpe A, D’Agostino D, Palermo G, Renier D, Franchini S, et al. Paclitaxel-hyaluronic acid for intravesical therapy of Bacillus Calmette-Guérin refractory carcinoma in situ of the bladder: results of a phase I study. J Urol. 2011;185:445–9.

Article  CAS  PubMed  Google Scholar 

Ito T, Fukuhara M, Okuda T, Okamoto H. Naked pDNA/hyaluronic acid powder shows excellent long-term storage stability and gene expression in murine lungs. Int J Pharm. 2020;574:118880.

Article  CAS  PubMed  Google Scholar 

Ichikawa M, Muramatsu N, Matsunaga W, Ishikawa T, Okuda T, Okamoto H, et al. Effects of inhalable gene transfection as a novel gene therapy for non-small cell lung cancer and malignant pleural mesothelioma. Sci Rep. 2022;12:1–8.

Article  Google Scholar 

Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I, Carbone M, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Pass Cancer Res. 2015;75:264–9.

Article  CAS  PubMed  Google Scholar 

Kadam P, Bhalerao S. Sample size calculation. Int J Ayurveda Res. 2010;1:55–7.

Article  PubMed  PubMed Central  Google Scholar 

Davis MR, Manning LS, Whitaker D, Garlepp MJ, Robinson BW. Establishment of a murine model of malignant mesothelioma. Int J Cancer. 1992;52:881–6.

Article  CAS  PubMed  Google Scholar 

Wahlbuhl E, Liehr T, Rincic M, Azawi S. Cytogenomic characterization of three murine malignant mesothelioma tumor cell lines. Mol Cytogenet. 2020;13:43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell. 2007;25:725–38.

Article  CAS  PubMed  Google Scholar 

Olsson A, Manzl C, Strasser A, Villunger A. How important are posttranslational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ. 2007;14:1561–75.

Article  CAS  PubMed  Google Scholar 

Cecchinelli B, Porrello A, Lazzari C, Gradi A, Bossi G, D’Angelo M, et al. Ser58 of mouse p53 is the homologue of human Ser46 and is phosphorylated by HIPK2 in apoptosis. Cell Death Differ. 2006;13:1994–7.

Article  CAS  PubMed  Google Scholar 

Xia Y, Li X, Sun W. Applications of recombinant adenovirus-p53 gene therapy for cancers in the clinic in China. Curr Gene Ther. 2020;20:127–41.

Article  CAS  PubMed  Google Scholar 

Hosmani J, Mushtaq S, Abullais SS, Almubarak HM, Assiri K, Testarelli L, et al. Recombinant human adenovirus-p53 therapy for the treatment of oral leukoplakia and oral squamous cell carcinoma: a systematic review. Medicina. 2021;57:438.

Article  PubMed  PubMed Central  Google Scholar 

Zhang W, Li L, Li D, Liu J, Li X, Li W, et al. The first approved gene therapy product for cancer Ad-p53(Gendicine):12 years in the clinic. Hum Gene Ther. 2018;29:160–79.

Article  CAS  PubMed  Google Scholar 

Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;6:601–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14:316–27.

Article  CAS  PubMed  Google Scholar 

Teschendorf C, Emons B, Muzyczka N, Graeven U, Schmiegel W. Efficacy of recombinant adeno-associated viral vectors serotypes 1, 2, and 5 for the transduction of pancreatic and colon carcinoma cells. Anticancer Res. 2010;30:1931–5.

CAS  PubMed  Google Scholar 

Melissa AK, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15:445–51.

Article  Google Scholar 

Li Y, Guo W, Li X, Zhang J, Sun M, Tang Z, et al. Expert consensus on the clinical application of recombinant adenovirus human p53 for head and neck cancers. Int J Oral Sci. 2021;13:38.

Article  PubMed  PubMed Central  Google Scholar 

Fujiwara T, Tanaka N, Kanazawa S, Ohtani S, Saijo Y, Nukiwa T, et al. Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2006;24:1689–99.

Article  CAS  PubMed  Google Scholar 

Mendell JR, Al-Zaidy SA, Louise R, Rodino-Klapac LR, Goodspeed K, Gray SJ, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29:464–88.

Article  CAS  PubMed  Google Scholar 

High-dose AAV gene therapy deaths. Nat Biotechnol. 2020;38:910. https://doi.org/10.1038/s41587-020-0642-9.

Nishikawa H, Goto M, Fukunishi S, Asai A, Nishiguchi S, Higuchi K. Cancer cachexia: its mechanism and clinical significance.Int J Mol Sci. 2021;22:8491.

Comments (0)

No login
gif